9 resultados para Design Thinking Strategy

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular analysis of complex modular structures, such as promoter regions or multi-domain proteins, often requires the creation of families of experimental DNA constructs having altered composition, order, or spacing of individual modules. Generally, creation of every individual construct of such a family uses a specific combination of restriction sites. However, convenient sites are not always available and the alternatives, such as chemical resynthesis of the experimental constructs or engineering of different restriction sites onto the ends of DNA fragments, are costly and time consuming. A general cloning strategy (nucleic acid ordered assembly with directionality, NOMAD; WWW resource locator http:@Lmb1.bios.uic.edu/NOMAD/NOMAD.htm l) is proposed that overcomes these limitations. Use of NOMAD ensures that the production of experimental constructs is no longer the rate-limiting step in applications that require combinatorial rearrangement of DNA fragments. NOMAD manipulates DNA fragments in the form of "modules" having a standardized cohesive end structure. Specially designed "assembly vectors" allow for sequential and directional insertion of any number of modules in an arbitrary predetermined order, using the ability of type IIS restriction enzymes to cut DNA outside of their recognition sequences. Studies of regulatory regions in DNA, such as promoters, replication origins, and RNA processing signals, construction of chimeric proteins, and creation of new cloning vehicles, are among the applications that will benefit from using NOMAD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a “seed peptide” with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-β1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human β1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed a p53 DNA binding domain that has virtually the same binding affinity for the gadd45 promoter as does wild-type protein but is considerably more stable. The design strategy was based on molecular evolution of the protein domain. Naturally occurring amino acid substitutions were identified by comparing the sequences of p53 homologues from 23 species, introducing them into wild-type human p53, and measuring the changes in stability. The most stable substitutions were combined in a multiple mutant. The advantage of this strategy is that, by substituting with naturally occurring residues, the function is likely to be unimpaired. All point mutants bind the consensus DNA sequence. The changes in stability ranged from +1.27 (less stable Q165K) to −1.49 (more stable N239Y) kcal mol−1, respectively. The changes in free energy of unfolding on mutation are additive. Of interest, the two most stable mutants (N239Y and N268D) have been known to act as suppressors and restored the activity of two of the most common tumorigenic mutants. Of the 20 single mutants, 10 are cancer-associated, though their frequency of occurrence is extremely low: A129D, Q165K, Q167E, and D148E are less stable and M133L, V203A and N239Y are more stable whereas the rest are neutral. The quadruple mutant (M133LV203AN239YN268D), which is stabilized by 2.65 kcal mol−1 and Tm raised by 5.6°C is of potential interest for trials in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method to design dominant-negative proteins (D-N) to the basic helix–loop–helix–leucine zipper (B-HLHZip) family of sequence-specific DNA binding transcription factors. The D-Ns specifically heterodimerize with the B-HLHZip dimerization domain of the transcription factors and abolish DNA binding in an equimolar competition. Thermal denaturation studies indicate that a heterodimer between a Myc B-HLHZip domain and a D-N consisting of a 12-amino acid sequence appended onto the Max dimerization domain (A-Max) is −6.3 kcal⋅mol−1 more stable than the Myc:Max heterodimer. One molar equivalent of A-Max can totally abolish the DNA binding activity of a Myc:Max heterodimer. This acidic extension also has been appended onto the dimerization domain of the B-HLHZip protein Mitf, a member of the transcription factor enhancer binding subfamily, to produce A-Mitf. The heterodimer between A-Mitf and the B-HLHZip domain of Mitf is −3.7 kcal⋅mol−1 more stable than the Mitf homodimer. Cell culture studies show that A-Mitf can inhibit Mitf-dependent transactivation both in acidic extension and in a dimerization-dependent manner. A-Max can inhibit Myc-dependent foci formation twice as well as the Max dimerization domain (HLHZip). This strategy of producing D-Ns may be applicable to other B-HLHZip or B-HLH proteins because it provides a method to inhibit the DNA binding of these transcription factors in a dimerization-specific manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general strategy is described for designing proteins that self assemble into large symmetrical nanomaterials, including molecular cages, filaments, layers, and porous materials. In this strategy, one molecule of protein A, which naturally forms a self-assembling oligomer, An, is fused rigidly to one molecule of protein B, which forms another self-assembling oligomer, Bm. The result is a fusion protein, A-B, which self assembles with other identical copies of itself into a designed nanohedral particle or material, (A-B)p. The strategy is demonstrated through the design, production, and characterization of two fusion proteins: a 49-kDa protein designed to assemble into a cage approximately 15 nm across, and a 44-kDa protein designed to assemble into long filaments approximately 4 nm wide. The strategy opens a way to create a wide variety of potentially useful protein-based materials, some of which share similar features with natural biological assemblies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated that it is possible to radically change the specificity of maltose binding protein by converting it into a zinc sensor using a rational design approach. In this new molecular sensor, zinc binding is transduced into a readily detected fluorescence signal by use of an engineered conformational coupling mechanism linking ligand binding to reporter group response. An iterative progressive design strategy led to the construction of variants with increased zinc affinity by combining binding sites, optimizing the primary coordination sphere, and exploiting conformational equilibria. Intermediates in the design series show that the adaptive process involves both introduction and optimization of new functions and removal of adverse vestigial interactions. The latter demonstrates the importance of the rational design approach in uncovering cryptic phenomena in protein function, which cannot be revealed by the study of naturally evolved systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replacement of the phosphodiester linkages of the polyanion RNA with guanidinium linkers (represented by g) provides the polycation ribonucleic guanidine (RNG). An anticipated structure for the triple-helical hybrid [r(Up)9U.r(Ag)9A.r(Up)9U] is presented. A basic strategy for the synthesis of RNG oligomers is described. Synthetic procedures are provided for tetrameric adenosyl RNG [r(Ag)3A].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Construction of synthetic combinatorial libraries is described that allows for the generation of a library of motifs rather than a library of compounds. Peptide libraries based on this strategy were synthesized and screened with model targets streptavidin and anti-beta-endorphin antibody. The screens resulted in observation of expected motifs providing evidence of the effectiveness of the suggested approach.