4 resultados para Descriptive classification by affects
em National Center for Biotechnology Information - NCBI
Resumo:
TIGRFAMs is a collection of protein families featuring curated multiple sequence alignments, hidden Markov models and associated information designed to support the automated functional identification of proteins by sequence homology. We introduce the term ‘equivalog’ to describe members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families where possible, and otherwise into protein families with other hierarchically defined homology types. TIGRFAMs currently contains over 800 protein families, available for searching or downloading at www.tigr.org/TIGRFAMs. Classification by equivalog family, where achievable, complements classification by orthology, superfamily, domain or motif. It provides the information best suited for automatic assignment of specific functions to proteins from large-scale genome sequencing projects.
Resumo:
Phosphorylation of the alpha-1 subunit of rat Na+,K(+)-ATPase by protein kinase C has been shown previously to decrease the activity of the enzyme in vitro. We have now undertaken an investigation of the mechanism by which this inhibition occurs. Analysis of the phosphorylation of recombinant glutathione S-transferase fusion proteins containing putative cytoplasmic domains of the protein, site-directed mutagenesis, and two-dimensional peptide mapping indicated that protein kinase C phosphorylated the alpha-1 subunit of the rat Na+,K(+)-ATPase within the extreme NH2-terminal domain, on serine-23. The phosphorylation of this residue resulted in a shift in the equilibrium toward the E1 form, as measured by eosin fluorescence studies, and this was associated with a decrease in the apparent K+ affinity of the enzyme, as measured by ATPase activity assays. The rate of transition from E2 to E1 was apparently unaffected by phosphorylation by protein kinase C. These results, together with previous studies that examined the effects of tryptic digestion of Na+,K(+)-ATPase, suggest that the NH2-terminal domain of the alpha-1 subunit, including serine-23, is involved in regulating the activity of the enzyme.