3 resultados para Density functional theory calculations

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pKa of HNO is predicted to be 7.2 ± 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO− affects the rates of acid-base chemistry of the HNO/NO− couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (Keq = 6.9 × 10−5). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication, we report our femtosecond real-time observation of the dynamics for the three didehydrobenzene molecules (p-, m-, and o-benzyne) generated from 1,4-, 1,3-, and 1,2-dibromobenzene, respectively, in a molecular beam, by using femtosecond time-resolved mass spectrometry. The time required for the first and the second C-Br bond breakage is less than 100 fs; the benzyne molecules are produced within 100 fs and then decay with a lifetime of 400 ps or more. Density functional theory and high-level ab initio calculations are also reported herein to elucidate the energetics along the reaction path. We discuss the dynamics and possible reaction mechanisms for the disappearance of benzyne intermediates. Our effort focuses on the isolated molecule dynamics of the three isomers on the femtosecond time scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the chemical reactivity of C3 of phosphoenolpyruvate (PEP) has been analyzed in terms of density functional theory quantified through quantum chemistry calculations. PEP is involved in a number of important enzymatic reactions, in which its C3 atom behaves like a base. In three different enzymatic reactions analyzed here, C3 sometimes behaves like a soft base and sometimes behaves like a hard base in terms of the hard-soft acid-base principle. This dual nature of C3 of PEP was found to be related to the conformational change of the molecule. This leads to a testable hypothesis: that PEP adopts particular conformations in the enzyme-substrate complexes of different PEP-using enzymes, and that the enzymes control the reactivity through controlling the dihedral angle between the carboxylate and the C==C double bond of PEP.