6 resultados para Deficit financeiro

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional MRI revealed differences between children with Attention Deficit Hyperactivity Disorder (ADHD) and healthy controls in their frontal–striatal function and its modulation by methylphenidate during response inhibition. Children performed two go/no-go tasks with and without drug. ADHD children had impaired inhibitory control on both tasks. Off-drug frontal–striatal activation during response inhibition differed between ADHD and healthy children: ADHD children had greater frontal activation on one task and reduced striatal activation on the other task. Drug effects differed between ADHD and healthy children: The drug improved response inhibition in both groups on one task and only in ADHD children on the other task. The drug modulated brain activation during response inhibition on only one task: It increased frontal activation to an equal extent in both groups. In contrast, it increased striatal activation in ADHD children but reduced it in healthy children. These results suggest that ADHD is characterized by atypical frontal–striatal function and that methylphenidate affects striatal activation differently in ADHD than in healthy children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the effect of short-term water deficits at different periods of sunflower (Helianthus annuus L.) leaf development on the spatial and temporal patterns of tissue expansion and epidermal cell division. Six water-deficit periods were imposed with similar and constant values of soil water content, predawn leaf water potential and [ABA] in the xylem sap, and with negligible reduction of the rate of photosynthesis. Water deficit did not affect the duration of expansion and division. Regardless of their timing, deficits reduced relative expansion rate by 36% and relative cell division rate by 39% (cells blocked at the G0-G1 phase) in all positions within the leaf. However, reductions in final leaf area and cell number in a given zone of the leaf largely differed with the timing of deficit, with a maximum effect for earliest deficits. Individual cell area was only affected during the periods when division slowed down. These behaviors could be simulated in all leaf zones and for all timings by assuming that water deficit affects relative cell division rate and relative expansion rate independently, and that leaf development in each zone follows a stable three-phase pattern in which duration of each phase is stable if expressed in thermal time (C. Granier and F. Tardieu [1998b] Plant Cell Environ 21: 695–703).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-week-old plants of two unrelated lines of maize (Zea mays L.) and their hybrid were submitted to progressive water stress for 10 d. Changes induced in leaf proteins were studied by two-dimensional electrophoresis and quantitatively analyzed using image analysis. Seventy-eight proteins out of a total of 413 showed a significant quantitative variation (increase or decrease), with 38 of them exhibiting a different expression in the two genotypes. Eleven proteins that increased by a factor of 1.3 to 5 in stressed plants and 8 proteins detected only in stressed plants were selected for internal amino acid microsequencing, and by similarity search 16 were found to be closely related to previously reported proteins. In addition to proteins already known to be involved in the response to water stress (e.g. RAB17 [Responsive to ABA]), several enzymes involved in basic metabolic cellular pathways such as glycolysis and the Krebs cycle (e.g. enolase and triose phosphate isomerase) were identified, as well as several others, including caffeate O-methyltransferase, the induction of which could be related to lignification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (−1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate correlations between phenotypic adaptation to water limitation and drought-induced gene expression, we have studied a model system consisting of a drought-tolerant line (R1) and a drought-sensitive line (S1) of sunflowers (Helianthus annuus L.) subjected to progressive drought. R1 tolerance is characterized by the maintenance of shoot cellular turgor. Drought-induced genes (HaElip1, HaDhn1, and HaDhn2) were previously identified in the tolerant line. The accumulation of the corresponding transcripts was compared as a function of soil and leaf water status in R1 and S1 plants during progressive drought. In leaves of R1 plants the accumulation of HaDhn1 and HaDhn2 transcripts, but not HaElip1 transcripts, was correlated with the drought-adaptive response. Drought-induced abscisic acid (ABA) concentration was not associated with the varietal difference in drought tolerance. Stomata of both lines displayed similar sensitivity to ABA. ABA-induced accumulation of HaDhn2 transcripts was higher in the tolerant than in the sensitive genotype. HaDhn1 transcripts were similarly accumulated in the tolerant and in the sensitive plants in response to ABA, suggesting that additional factors involved in drought regulation of HaDhn1 expression might exist in tolerant plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we developed a rat model of persistent mitochondrial dysfunction based upon the chronic partial inhibition of the mitochondrial enzyme cytochrome oxidase (EC 1.9.3.1). Continuous systemic infusion of sodium azide at approximately 1 mg/kg per hr inhibited cytochrome oxidase activity and produced a spatial learning deficit. In other laboratories, glucocorticoids have been reported to exacerbate neuronal damage from various acute metabolic insults. Therefore, we tested the hypothesis that corticosterone, the primary glucocorticoid in the rat, would potentiate the sodium azide-induced learning deficit. To this end, we first identified nonimpairing doses of sodium azide (approximately 0.75 mg/kg per hr) and corticosterone (100-mg pellet, 3-week sustained-release). We now report that chronic co-administration of these individually nonimpairing treatments produced a severe learning deficit. Moreover, the low dose of corticosterone, which did not elevate serum corticosterone, acted synergistically with sodium azide to inhibit cytochrome oxidase activity. The latter result represents a previously unidentified effect of glucocorticoids that provides a candidate mechanism for glucocorticoid potentiation of neurotoxicity induced by metabolic insult. These results may have the clinical implication of expanding the definition of hypercortisolism in patient populations with compromised oxidative metabolism. Furthermore, they suggest that glucocorticoid treatment may contribute to pathology in disease or trauma conditions that involve metabolic insult.