9 resultados para Deer hunting.
em National Center for Biotechnology Information - NCBI
Resumo:
The relationship between hantaviruses and their reservoir hosts is not well understood. We successfully passaged a mouse-adapted strain of Sin Nombre virus from deer mice (Peromyscus maniculatus) by i.m. inoculation of 4- to 6-wk-old deer mouse pups. After inoculation with 5 ID50, antibodies to the nucleocapsid (N) antigen first became detectable at 14 d whereas neutralizing antibodies were detectable by 7 d. Viral N antigen first began to appear in heart, lung, liver, spleen, and/or kidney by 7 d, whereas viral RNA was present in those tissues as well as in thymus, salivary gland, intestine, white fat, and brown fat. By 14 d nearly all tissues examined displayed both viral RNA and N antigen. We noted no consistent histopathologic changes associated with infection, even when RNA load was high. Viral RNA titers peaked on 21 d in most tissues, then began to decline by 28 d. Infection persisted for at least 90 d. The RNA titers were highest in heart, lung, and brown fat. Deer mice can be experimentally infected with Sin Nombre virus, which now allows provocative examination of the virus-host relationship. The prominent involvement of heart, lung, and brown fat suggests that these sites may be important tissues for early virus replication or for maintenance of the virus in nature.
Resumo:
A human-derived strain of the agent of human granulocytic ehrlichiosis, a recently described emerging rickettsial disease, has been established by serial blood passage in mouse hosts. Larval deer ticks acquired infection by feeding upon such mice and efficiently transmitted the ehrlichiae after molting to nymphs, thereby demonstrating vector competence. The agent was detected by demonstrating Feulgen-positive inclusions in the salivary glands of the experimentally infected ticks and from field-derived adult deer ticks. White-footed mice from a field site infected laboratory-reared ticks with the agent of human granulocytic ehrlichiosis, suggesting that these rodents serve as reservoirs for ehrlichiae as well as for Lyme disease spirochetes and the piroplasm that causes human babesiosis. About 10% of host-seeking deer ticks were infected with ehrlichiae, and of these, 20% also contained spirochetes. Cotransmission of diverse pathogens by the aggressively human-biting deer tick may have a unique impact on public health in certain endemic sites.
Resumo:
A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.
Resumo:
In 1979, Lewontin and I borrowed the architectural term “spandrel” (using the pendentives of San Marco in Venice as an example) to designate the class of forms and spaces that arise as necessary byproducts of another decision in design, and not as adaptations for direct utility in themselves. This proposal has generated a large literature featuring two critiques: (i) the terminological claim that the spandrels of San Marco are not true spandrels at all and (ii) the conceptual claim that they are adaptations and not byproducts. The features of the San Marco pendentives that we explicitly defined as spandrel-properties—their necessary number (four) and shape (roughly triangular)—are inevitable architectural byproducts, whatever the structural attributes of the pendentives themselves. The term spandrel may be extended from its particular architectural use for two-dimensional byproducts to the generality of “spaces left over,” a definition that properly includes the San Marco pendentives. Evolutionary biology needs such an explicit term for features arising as byproducts, rather than adaptations, whatever their subsequent exaptive utility. The concept of biological spandrels—including the examples here given of masculinized genitalia in female hyenas, exaptive use of an umbilicus as a brooding chamber by snails, the shoulder hump of the giant Irish deer, and several key features of human mentality—anchors the critique of overreliance upon adaptive scenarios in evolutionary explanation. Causes of historical origin must always be separated from current utilities; their conflation has seriously hampered the evolutionary analysis of form in the history of life.
Resumo:
From ≈11,200 to 8,000 years ago, the Great Plains of North America were populated by small Paleoindian hunting groups with well developed weaponry and the expertise to successfully hunt large mammals, especially mammoths and bison. Mammoths became extinct on the Plains by 11,000 years ago, and, although paleoecological conditions were worsening, their demise may have been hastened by human predation. After this, the main target of the Plains Paleoindian hunters consisted of subspecies of bison, Bison antiquus and Bison occidentalis. As bison populations gradually diminished, apparently because of worsening ecological conditions, by ≈8,000 years ago, human subsistence was forced into a greater dependence on small animal and plant foods. Human paleoecology studies of the Paleoindian time period rely heavily on multidisciplinary efforts. Geomorphologists, botanists, soil scientists, palynologists, biologists, and other specialists aid archaeologists in data recovery and analysis, although, with few exceptions, their contributions are derived from the fringes rather than the mainstream of their disciplines.
Resumo:
Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting success by lynx through the cycle. Using a combined approach of empirical, statistical, and mathematical modeling, we highlight how shifts in trophic interactions between the lynx and the hare generate the nonlinear process primarily by shifting functional response curves during the increase and the decrease phases.
Resumo:
The ARKdb genome databases provide comprehensive public repositories for genome mapping data from farmed species and other animals (http://www.thearkdb.org) providing a resource similar in function to that offered by GDB or MGD for human or mouse genome mapping data, respectively. Because we have attempted to build a generic mapping database, the system has wide utility, particularly for those species for which development of a specific resource would be prohibitive. The ARKdb genome database model has been implemented for 10 species to date. These are pig, chicken, sheep, cattle, horse, deer, tilapia, cat, turkey and salmon. Access to the ARKdb databases is effected via the World Wide Web using the ARKdb browser and Anubis map viewer. The information stored includes details of loci, maps, experimental methods and the source references. Links to other information sources such as PubMed and EMBL/GenBank are provided. Responsibility for data entry and curation is shared amongst scientists active in genome research in the species of interest. Mirror sites in the United States are maintained in addition to the central genome server at Roslin.
Resumo:
In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.
Resumo:
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.