4 resultados para Data Coding.
em National Center for Biotechnology Information - NCBI
Resumo:
Previous studies have suggested that ionizing radiation causes irreparable DNA double-strand breaks in mice and cell lines harboring mutations in any of the three subunits of DNA-dependent protein kinase (DNA-PK) (the catalytic subunit, DNA-PKcs, or one of the DNA-binding subunits, Ku70 or Ku86). In actuality, these mutants vary in their ability to resolve double-strand breaks generated during variable (diversity) joining [V(D)J] recombination. Mutant cell lines and mice with targeted deletions in Ku70 or Ku86 are severely compromised in their ability to form coding and signal joints, the products of V(D)J recombination. It is noteworthy, however, that severe combined immunodeficient (SCID) mice, which bear a nonnull mutation in DNA-PKcs, are substantially less impaired in forming signal joints than coding joints. The current view holds that the defective protein encoded by the murine SCID allele retains enough residual function to support signal joint formation. An alternative hypothesis proposes that DNA-PKcs and Ku perform different roles in V(D)J recombination, with DNA-PKcs required only for coding joint formation. To resolve this issue, we examined V(D)J recombination in DNA-PKcs-deficient (SLIP) mice. We found that the effects of this mutation on coding and signal joint formation are identical to the effects of the SCID mutation. Signal joints are formed at levels 10-fold lower than in wild type, and one-half of these joints are aberrant. These data are incompatible with the notion that signal joint formation in SCID mice results from residual DNA-PKcs function, and suggest a third possibility: that DNA-PKcs normally plays an important but nonessential role in signal joint formation.
Resumo:
The non-coding RNAs database (http://biobases.ibch.poznan.pl/ncRNA/) contains currently available data on RNAs, which do not have long open reading frames and act as riboregulators. Non-coding RNAs are involved in the specific recognition of cellular nucleic acid targets through complementary base pairing to control cell growth and differentiation. Some of them are connected with several well known developmental and neurobehavioral disorders. We have divided them into four groups. This paper is a short introduction to the database and presents its latest, updated edition.
Resumo:
Controversy still exists over the adaptive nature of variation of enzyme loci. In conifers, random amplified polymorphic DNAs (RAPDs) represent a class of marker loci that is unlikely to fall within or be strongly linked to coding DNA. We have compared the genetic diversity in natural populations of black spruce [Picea mariana (Mill.) B.S.P.] using genotypic data at allozyme loci and RAPD loci as well as phenotypic data from inferred RAPD fingerprints. The genotypic data for both allozymes and RAPDs were obtained from at least six haploid megagametophytes for each of 75 sexually mature individuals distributed in five populations. Heterozygosities and population fixation indices were in complete agreement between allozyme loci and RAPD loci. In black spruce, it is more likely that the similar levels of variation detected at both enzyme and RAPD loci are due to such evolutionary forces as migration and the mating system, rather than to balancing selection and overdominance. Furthermore, we show that biased estimates of expected heterozygosity and among-population differentiation are obtained when using allele frequencies derived from dominant RAPD phenotypes.
Resumo:
The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.