27 resultados para Darkness

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To clarify the molecular basis of the photoperiodic induction of flowering in the short-day plant Pharbitis nil cv Violet, we examined changes in the level of mRNA in cotyledons during the flower-inductive photoperiod using the technique of differential display by the polymerase chain reaction. A transcript that accumulated during the inductive dark period was identified and a cDNA corresponding to the transcript, designated PnC401 (P. nil C401), was isolated. RNA-blot hybridization verified that levels of PnC401 mRNA fluctuated with a circadian rhythm, with maxima between 12 and 16 h after the beginning of the dark period) and minima of approximately 0. This oscillation continued even during an extended dark period but was damped under continuous light. Accumulation of PnC401 mRNA was reduced by a brief exposure to red light at the 8th h of the dark period (night-break treatment) or by exposure to far-red light at the end of the light period (end-of-day far-red treatment). These results suggest that fluctuations in levels of PnC401 mRNA are regulated by phytochrome(s) and a circadian clock and that they are associated with photoperiodic events that include induction of flowering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psbA2 gene of a unicellular cyanobacterium, Microcystis aeruginosa K-81, encodes a D1 protein homolog in the reaction center of photosynthetic Photosystem II. The expression of the psbA2 transcript has been shown to be light-dependent as assessed under light and dark (12/12 h) cycling conditions. We aligned the 5′-untranslated leader regions (UTRs) of psbAs from different photosynthetic organisms and identified a conserved sequence, UAAAUAAA or the ‘AU-box’, just upstream of the SD sequences. To clarify the role of 5′-upstream cis-elements containing the AU-box for light-dependent expression of psbA2, a series of deletion and point mutations in the region were introduced into the genome of heterologous cyanobacterium Synechococcus sp. strain PCC 7942, and psbA2 expression was examined. A clear pattern of light-dependent expression was observed in recombinant cyanobacteria carrying the K-81 psbA2 –38/+36 region (which includes the minimal promoter element and a light-dependent cis-element with the AU-box), +1 indicating the transcription start site. A constitutive pattern of expression, in which the transcripts remained almost stable under dark conditions, was obtained in cells harboring the –38/+14 region (the minimal element), indicating that the +14/+36 region with the AU-box is important for the observed light-dependent expression. Point mutations analyses within the AU-box also revealed that changes in number, direction and identity (as assayed by adenine/uridine nucleotide substitutions) influenced the light-dependent pattern of expression. The level of psbA2 transcripts increased markedly in CG- or deletion-box mutants in the dark, strongly indicating that the AU- (AT-) box acts as a negative cis-element. Furthermore, characterization of transcript accumulation in cells treated with rifampicin suggests that psbA2 5′-mRNA is unstable in the dark, supporting the view that the light-dependent expression is controlled at the post-transcriptional level. We discuss various mechanisms that may lead to altered mRNA stability such as the binding of factor(s) or ribosomes to the 5′-UTR and possible roles of the AU-box motif and the SD sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic characteristics of reflex eye movements were measured in two strains of chronically prepared mice by using an infrared television camera system. The horizontal vestibulo-ocular reflex (HVOR) and horizontal optokinetic response (HOKR) were induced by sinusoidal oscillations of a turntable, in darkness, by 10° (peak to peak) at 0.11–0.50 Hz and of a checked-pattern screen, in light, by 5–20°at 0.11–0.17 Hz, respectively. The gains and phases of the HVOR and HOKR of the C57BL/6 mice were nearly equivalent to those of rabbits and rats, whereas the 129/Sv mice exhibited very low gains in the HVOR and moderate phase lags in the HOKR, suggesting an inherent sensory-motor anomaly. Adaptability of the HOKR was examined in C57BL/6 mice by sustained screen oscillation. When the screen was oscillated by 10° at 0.17 Hz, which induced sufficient retinal slips, the gain of the HOKR increased by 0.08 in 1 h on average, whereas the stimuli that induced relatively small or no retinal slips affected the gain very little. Lesions of the flocculi induced by local applications of 0.1% ibotenic acid and lesions of the inferior olivary nuclei induced by i.p. injection of 3-acetylpyridine in C57BL/6 mice little affected the dynamic characteristics of the HVOR and HOKR, but abolished the adaptation of the HOKR. These results indicate that the olivo-floccular system plays an essential role in the adaptive control of the ocular reflex in mice, as suggested in other animal species. The data presented provide the basis for analyzing the reflex eye movements of genetically engineered mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambient light conditions affect the morphology of synaptic elements within the cone pedicle and modulate the spatial properties of the horizontal cell receptive field. We describe here that the effects of retinoic acid on these properties are similar to those of light adaptation. Intraorbital injection of retinoic acid into eyes of dark-adapted carp that subsequently were kept in complete darkness results in the formation of numerous spinules at the terminal dendrites of horizontal cells, a typical feature of light-adapted retinae. The formation of these spinules during light adaptation is impaired in the presence of citral, a competitive inhibitor of the dehydrogenase responsible for the generation of retinoic acid in vivo. Intracellularly recorded responses of horizontal cells from dark-adapted eyecup preparations superfused with retinoic acid reveal typical light-adapted spatial properties. Retinoic acid thus appears to act as a light-signaling modulator. Its activity appears not to be at the transcriptional level because its action was not blocked by actinomycin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial orientation of vertebrates is implemented by two complementary mechanisms: allothesis, processing the information about spatial relationships between the animal and perceptible landmarks, and idiothesis, processing the substratal and inertial information produced by the animal's active or passive movement through the environment. Both systems allow the animal to compute its position with respect to perceptible landmarks and to the already traversed portion of the path. In the present study, we examined the properties of substratal idiothesis deprived of relevant exteroceptive information. Rats searching for food pellets in an arena formed by a movable inner disk and a peripheral immobile belt were trained in darkness to avoid a 60° sector; rats that entered this sector received a mild foot shock. The punished sector was defined in the substratal idiothetic frame, and the rats had to determine the location of the shock sector with the use of substratal idiothesis only, because all putative intramaze cues were made irrelevant by angular displacements of the disk relative to the belt. Striking impairment of place avoidance by this “shuffling procedure” indicates that effective substratal idiothesis must be updated by exteroceptive intramaze cues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barley (Hordeum vulgare L.) is a long-day plant whose flowering is enhanced when the photoperiod is supplemented with far-red light, and this promotion is mediated by phytochrome. A chemically mutagenized dwarf cultivar of barley was selected for early flowering time (barley maturity daylength response [BMDR]-1) and was made isogenic with the cultivar Shabet (BMDR-8) by backcrossing. BMDR-1 was found to contain higher levels of both phytochrome A and phytochrome B in the dark on immunoblots with monoclonal antibodies from oat (Avena sativa L.) that are specific to different members of the phytochrome gene family. Phytochrome A was light labile in both BMDR-1 and BMDR-8, decreasing to very low levels after 4 d of growth in the light. Phytochrome B was light stable in BMDR-8, being equal in both light and darkness. However, phytochrome B became light labile in BMDR-1 and this destabilization of phytochrome B appeared to make BMDR-1 insensitive to photoperiod. In addition, both the mutant and the wild type lacked any significant promotion of flowering in response to a pulse of far-red light given at the end of day, and the end-of-day, far-red inhibition of tillering is normal in both, suggesting that phytochrome B is not involved with these responses in barley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protein kinase CK2 (formerly casein kinase II) is thought to be involved in light-regulated gene expression in plants because of its ability to phosphorylate transcription factors that bind to the promoter regions of light-regulated genes in vitro. To address this possibility in vivo and to learn more about the potential physiological roles of CK2 in plants, we transformed Arabidopsis with an antisense construct of the CK2 α-subunit gene and investigated both morphological and molecular phenotypes. Antisense transformants had a smaller adult leaf size and showed increased expression of chs in darkness and of cab and rbcS after red-light treatment. The latter molecular phenotype implied that CK2 might serve as one of several negative and quantitative effectors in light-regulated gene expression. The possible mechanism of CK2 action and its involvement in the phytochrome signal transduction pathway are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroplast gene psbD encodes D2, a chlorophyll-binding protein located in the photosystem II reaction center. Transcription of psbD in higher plants involves at least three promoters, one of which is regulated by blue light. The psbD blue-light-regulated promoter (BLRP) consists of a −10 promoter element and an activating complex, AGF, that binds immediately upstream of −35. A second sequence-specific DNA-binding complex, PGTF, binds upstream of AGF between −71 and −100 in the barley (Hordeum vulgare) psbD BLRP. In this study we report that ADP-dependent phosphorylation selectively inhibits the binding of PGTF to the barley psbD BLRP. ATP at high concentrations (1–5 mm) inhibits PGTF binding, but in the presence of phosphocreatine and phosphocreatine kinase, this capacity is lost, presumably due to scavenging of ADP. ADP inhibits PGTF binding at relatively low concentrations (0.1 mm), whereas other nucleotides are unable to mediate this response. ADP-mediated inhibition of PGTF binding is reduced in the presence of the protein kinase inhibitor K252a. This and other results suggest that ADP-dependent phosphorylation of PGTF (or some associated protein) inhibits binding of PGTF to the psbD BLRP and reduces transcription. ADP-dependent phosphorylation is expected to increase in darkness in parallel with the rise in ADP levels in chloroplasts. ADP-dependent phosphorylation in chloroplasts may, therefore, in coordination, inactivate enzymes involved in carbon assimilation, protein synthesis, and transcription during diurnal light/dark cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pigment content of dark-grown primary needles of Pinus jeffreyi L. and Pinus sylvestris L. was determined by high-performance liquid chromatography. The state of protochlorophyllide a and of chlorophylls during dark growth were analyzed by in situ 77 K fluorescence spectroscopy. Both measurements unambiguously demonstrated that pine primary needles are able to synthesize chlorophyll in the dark. Norflurazon strongly inhibited both carotenoid and chlorophyll synthesis. Needles of plants treated with this inhibitor had low chlorophyll content, contained only traces of xanthophylls, and accumulated carotenoid precursors. The first form of chlorophyll detected in young pine needles grown in darkness had an emission maximum at 678 nm. Chlorophyll-protein complexes with in situ spectroscopic properties similar to those of fully green needles (685, 695, and 735 nm) later accumulated in untreated plants, whereas in norflurazon-treated plants the photosystem I emission at 735 nm was completely lacking. To better characterize the light-dependent chlorophyll biosynthetic pathway in pine needles, the 77 K fluorescence properties of in situ protochlorophyllide a spectral forms were studied. Photoactive and nonphotoactive protochlorophyllide a forms with emission properties similar to those reported for dark-grown angiosperms were found, but excitation spectra were substantially red shifted. Because of their lower chlorophyll content, norflurazon-treated plants were used to study the protochlorophyllide a photoreduction process triggered by one light flash. The first stable chlorophyllide photoproduct was a chlorophyllide a form emitting at 688 nm as in angiosperms. Further chlorophyllide a shifts usually observed in angiosperms were not detected. The rapid regeneration of photoactive protochlorophyllide a from nonphotoactive protochlorophyllide after one flash was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. We have tested whether hexose export is the normal route of carbon export from chloroplasts at night. We used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (Phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mm, whereas that in the chloroplasts was 5 mm, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. We conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity by 2-carboxyarabinitol 1-phosphate (CA1P) was investigated using gas-exchange analysis of antisense tobacco (Nicotiana tabacum) plants containing reduced levels of Rubisco activase. When an increase in light flux from darkness to 1200 μmol quanta m−2 s−1 was followed, the slow increase in CO2 assimilation by antisense leaves contained two phases: one represented the activation of the noncarbamylated form of Rubisco, which was described previously, and the other represented the activation of the CA1P-inhibited form of Rubisco. We present evidence supporting this conclusion, including the observation that this second phase, like CA1P, is only present following darkness or very low light flux. In addition, the second phase of CO2 assimilation was correlated with leaf CA1P content. When this novel phase was resolved from the CO2 assimilation trace, most of it was found to have kinetics similar to the activation of the noncarbamylated form of Rubisco. Additionally, kinetics of the novel phase indicated that the activation of the CA1P-inhibited form of Rubisco proceeds faster than the degradation of CA1P by CA1P phosphatase. These results may be significant with respect to current models of the regulation of Rubisco activity by Rubisco activase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies with 15N indicate that appreciable generation of NH4+ from endogenous sources accompanies the uptake and assimilation of exogenous NH4+ by roots. To identify the source of NH4+ generation, maize (Zea mays L.) seedlings were grown on 14NH4+ and then exposed for 3 d to highly labeled 15NH4+. More of the entering 15NH4+ was incorporated into the protein-N fraction of roots in darkness (approximately 25%) than in the light (approximately 14%). Although the 14NH4+ content of roots declined rapidly to less than 1 μmol per plant, efflux of 14NH4+ continued throughout the 3-d period at an average daily rate of 14 μmol per plant. As a consequence, cumulative 14NH4+ efflux during the 3-d period accounted for 25% of the total 14N initially present in the root. Although soluble organic 14N in roots declined during the 3-d period, insoluble 14N remained relatively constant. In shoots both soluble organic 14N and 14NH4+ declined, but a comparable increase in insoluble 14N was noted. Thus, total 14N in shoots remained constant, reflecting little or no net redistribution of 14N between shoots and roots. Collectively, these observations reveal that catabolism of soluble organic N, not protein N, is the primary source of endogenous NH4+ generation in maize roots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a ΔpH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the ΔpH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the ΔpH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1′-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N,N′-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of ΔpH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.