9 resultados para Dark matter theory

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is abundant evidence for large amounts of unseen matter in the universe. This dark matter, by its very nature, couples feebly to ordinary matter and is correspondingly difficult to detect. Nonetheless, several experiments are now underway with the sensitivity required to detect directly galactic halo dark matter through their interactions with matter and radiation. These experiments divide into two broad classes: searches for weakly interacting massive particles (WIMPs) and searches for axions. There exists a very strong theoretical bias for supposing that supersymmetry (SUSY) is a correct description of nature. WIMPs are predicted by this SUSY theory and have the required properties to be dark matter. These WIMPs are detected from the byproducts of their occasional recoil against nucleons. There are efforts around the world to detect these rare recoils. The WIMP part of this overview focuses on the cryogenic dark matter search (CDMS) underway in California. Axions, another favored dark matter candidate, are predicted to arise from a minimal extension of the standard model that explains the absence of the expected large CP violating effects in strong interactions. Axions can, in the presence of a large magnetic field, turn into microwave photons. It is the slight excess of photons above noise that signals the axion. Axion searches are underway in California and Japan. The axion part of this overview focuses on the California effort. Brevity does not allow me to discuss other WIMP and axion searches, likewise for accelerator and satellite based searches; I apologize for their omission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle candidates for astrophysical dark matter are reviewed, with particular emphasis on the lightest supersymmetric particle and the axion. The former is now constrained by accelerator experiments to have a mass above about 40 GeV, and ongoing searches at accelerators, in space, and in underground experiments have a good chance to detect it. A reevaluation of the constraint on the axion from supernova 1987a leaves open an interesting window where it may be detected if it constitutes the galactic halo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until the mid-1990s a person could not point to any celestial object and say with assurance that “here is a brown dwarf.” Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss recent developments in our understanding of matter, broadly construed, and their implications for contemporary research in fundamental physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-α clouds, x-ray gas in clusters, and the microwave anisotropy are made.