4 resultados para Damage Localization

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blindsight is a phenomenon in which human patients with damage to striate cortex deny any visual sensation in the resultant visual field defect but can nonetheless detect and localize stimuli when persuaded to guess. Although monkeys with striate lesions have also been shown to exhibit some residual vision, it is not yet clear to what extent the residual capacities in monkeys parallel the phenomenon of human blindsight. To clarify this issue, we trained two monkeys with unilateral lesions of striate cortex to make saccadic eye movements to visual targets in both hemifields under two conditions. In the condition analogous to clinical perimetry, they failed to initiate saccades to targets presented in the contralateral hemifield and thus appeared "blind." Only in the condition where the fixation point was turned off simultaneously with the onset of the target--signaling the animal to respond at the appropriate time--were monkeys able to localize targets contralateral to the striate lesion. These results indicate that the conditions under which residual vision is demonstrable are similar for monkeys with striate cortex damage and humans with blindsight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ataxia telangiectasia–mutated gene (ATM) is a 350-kDa protein whose function is defective in the autosomal recessive disorder ataxia telangiectasia (AT). Affinity-purified polyclonal antibodies were used to characterize ATM. Steady-state levels of ATM protein varied from undetectable in most AT cell lines to highly expressed in HeLa, U2OS, and normal human fibroblasts. Subcellular fractionation showed that ATM is predominantly a nuclear protein associated with the chromatin and nuclear matrix. ATM protein levels remained constant throughout the cell cycle and did not change in response to serum stimulation. Ionizing radiation had no significant effect on either the expression or distribution of ATM. ATM immunoprecipitates from HeLa cells and the human DNA-dependent protein kinase null cell line MO59J, but not from AT cells, phosphorylated the 34-kDa subunit of replication protein A (RPA) complex in a single-stranded and linear double-stranded DNA–dependent manner. Phosphorylation of p34 RPA occurred on threonine and serine residues. Phosphopeptide analysis demonstrates that the ATM-associated protein kinase phosphorylates p34 RPA on similar residues observed in vivo. The DNA-dependent protein kinase activity observed for ATM immunocomplexes, along with the association of ATM with chromatin, suggests that DNA damage can induce ATM or a stably associated protein kinase to phosphorylate proteins in the DNA damage response pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissues expressing mRNAs of three cold-induced genes, blt101, blt14, and blt4.9, and a control gene, elongation factor 1α, were identified in the crown and immature leaves of cultivated barley (Hordeum vulgare L. cv Igri). Hardiness and tissue damage were assessed. blt101 and blt4.9 mRNAs were not detected in control plants; blt14 was expressed in control plants but only in the inner layers of the crown cortex. blt101 was expressed in many tissues of cold-acclimated plants but most strongly in the vascular-transition zone of the crown; blt14 was expressed only in the inner layers of the cortex and in cell layers partly surrounding vascular bundles in the vascular-transition zone; expression of blt4.9, which codes for a nonspecific lipid-transfer protein, was confined to the epidermis of the leaf and to the epidermis of the older parts of the crown. None of the cold-induced genes was expressed in the tunica, although the control gene was most strongly expressed there. Thus, the molecular aspects of acclimation differed markedly between tissues. Damage in the vascular-transition zone of the crown correlated closely with plant survival. Therefore, the strong expression of blt101 and blt14 in this zone may indicate a direct role in freezing tolerance of the crown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rad51 is a highly conserved eukaryotic homolog of the prokaryotic recombination protein RecA, which has been shown to function in both recombinational repair of DNA damage and meiotic recombination in yeast. In primary murine B cells cultured with lipopolysaccharide (LPS) to stimulate heavy chain class switch recombination, Rad51 protein levels are dramatically induced. Immunofluorescent microscopy shows that anti-Rad51 antibodies stain foci that are localized within the nuclei of switching B cells. Immunohistochemical analysis of splenic sections shows that clusters of cells that stain brightly with anti-Rad51 antibodies are evident within several days after primary immunization and that Rad51 staining in vivo is confined to B cells that are switching from expression of IgM to IgG antibodies. Following switch recombination, B cells populate splenic germinal centers, where somatic hypermutation and clonal proliferation occur. Germinal center B cells are not stained by anti-Rad51 antibodies. Rad51 expression is therefore not coincident with somatic hypermutation, nor does Rad51 expression correlate simply with cell proliferation. These data suggest that Rad51, or a highly related member of the conserved RecA family, may function in class switch recombination.