6 resultados para DRIVES

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mammalian recombinant strategy was established to dissect rules of basement membrane laminin assembly and secretion. The α-, β-, and γ-chain subunits of laminin-1 were expressed in all combinations, transiently and/or stably, in a near-null background. In the absence of its normal partners, the α chain was secreted as intact protein and protein that had been cleaved in the coiled-coil domain. In contrast, the β and γ chains, expressed separately or together, remained intracellular with formation of ββ or βγ, but not γγ, disulfide-linked dimers. Secretion of the β and γ chains required simultaneous expression of all three chains and their assembly into αβγ heterotrimers. Epitope-tagged recombinant α subunit and recombinant laminin were affinity-purified from the conditioned medium of αγ and αβγ clones. Rotary-shadow electron microscopy revealed that the free α subunit is a linear structure containing N-terminal and included globules with a foreshortened long arm, while the trimeric species has the typical four-arm morphology of native laminin. We conclude that the α chain can be delivered to the extracellular environment as a single subunit, whereas the β and γ chains cannot, and that the α chain drives the secretion of the trimeric molecule. Such an α-chain-dependent mechanism could allow for the regulation of laminin export into a nascent basement membrane, and might serve an important role in controlling basement membrane formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuritic outgrowth is a striking example of directed motility, powered through the actions of molecular motors. Members of the myosin superfamily of actin-associated motors have been implicated in this complex process. Although conventional myosin II is known to be present in neurons, where it is localized at the leading edge of growth cones and in the cell cortex close to the plasma membrane, its functional involvement in growth cone motility has remained unproven. Here, we show that antisense oligodeoxyribonucleotides, complementary to a specific isoform of conventional myosin (myosin IIB), attenuate filopodial extension whereas sense and scrambled control oligodeoxyribonucleotides have no effect. Attenuation is shown to be reversible, neurite outgrowth being restored after cessation of the antisense regimen. Myosin IIB mRNA was present during active neurite extension, but levels were minimal in phenotypically rounded cells before neurite outgrowth and message levels decreased during antisense treatment. By contrast, the myosin IIA isoform is shown to be expressed constitutively both before and during neurite outgrowth and throughout exposure to myosin IIB antisense oligodeoxyribonucleotides. These results provide direct evidence that a conventional two-headed myosin is required for growth cone motility and is responsible, at least in part, for driving neuritic process outgrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA topoisomerase II is a homodimeric molecular machine that couples ATP usage to the transport of one DNA segment through a transient break in another segment. In the presence of a nonhydrolyzable ATP analog, the enzyme is known to promote a single turnover of DNA transport. Current models for the enzyme’s mechanism based on this result have hydrolysis of two ATPs as the last step, used only to reset the enzyme for another round of reaction. Using rapid-quench techniques, topoisomerase II recently was shown to hydrolyze its two bound ATPs in a strictly sequential manner. This result is incongruous with the models based on the nonhydrolyzable ATP analog data. Here we present evidence that hydrolysis of one ATP by topoisomerase II precedes, and accelerates, DNA transport. These results indicate that important features of this enzyme’s mechanism previously have been overlooked because of the reliance on nonhydrolyzable analogs for studying a single reaction turnover. A model for the mechanism of topoisomerase II is presented to show how hydrolysis of one ATP could drive DNA transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid evolution driven by positive Darwinian selection is a recurrent theme in male reproductive protein evolution. In contrast, positive selection has never been demonstrated for female reproductive proteins. Here, we perform phylogeny-based tests on three female mammalian fertilization proteins and demonstrate positive selection promoting their divergence. Two of these female fertilization proteins, the zona pellucida glycoproteins ZP2 and ZP3, are part of the mammalian egg coat. Several sites identified in ZP3 as likely to be under positive selection are located in a region previously demonstrated to be involved in species-specific sperm-egg interaction, suggesting the selective pressure is related to male-female interaction. The results provide long-sought evidence for two evolutionary hypotheses: sperm competition and sexual conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently have shown that selective growth of transplanted normal hepatocytes can be achieved in a setting of cell cycle block of endogenous parenchymal cells. Thus, massive proliferation of donor-derived normal hepatocytes was observed in the liver of rats previously given retrorsine (RS), a naturally occurring alkaloid that blocks proliferation of resident liver cells. In the present study, the fate of nodular hepatocytes transplanted into RS-treated or normal syngeneic recipients was followed. The dipeptidyl peptidase type IV-deficient (DPPIV−) rat model for hepatocyte transplantation was used to distinguish donor-derived cells from recipient cells. Hepatocyte nodules were chemically induced in Fischer 344, DPPIV+ rats; livers were then perfused and larger (>5 mm) nodules were separated from surrounding tissue. Cells isolated from either tissue were then injected into normal or RS-treated DPPIV− recipients. One month after transplantation, grossly visible nodules (2–3 mm) were seen in RS-treated recipients transplanted with nodular cells. They grew rapidly, occupying 80–90% of the host liver at 2 months, and progressed to hepatocellular carcinoma within 4 months. By contrast, no liver nodules developed within 6 months when nodular hepatocytes were injected into the liver of recipients not exposed to RS, although small clusters of donor-derived cells were present in these animals. Taken together, these results directly point to a fundamental role played by the host environment in modulating the growth and the progression rate of altered cells during carcinogenesis. In particular, they indicate that conditions associated with growth constraint of the host tissue can drive tumor progression in vivo.