4 resultados para DOMS

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain capillary endothelial cells (BCECs) are targets of CD4-independent infection by HIV-1 and simian immunodeficiency virus (SIV) strains in vitro and in vivo. Infection of BCECs may provide a portal of entry for the virus into the central nervous system and could disrupt blood–brain barrier function, contributing to the development of AIDS dementia. We found that rhesus macaque BCECs express chemokine receptors involved in HIV and SIV entry including CCR5, CCR3, CXCR4, and STRL33, but not CCR2b, GPR1, or GPR15. Infection of BCECs by the neurovirulent strain SIV/17E-Fr was completely inhibited by aminooxypentane regulation upon activation, normal T cell expression and secretion in the presence or absence of ligands, but not by eotaxin or antibodies to CD4. We found that the envelope (env) proteins from SIV/17E-Fr and several additional SIV strains mediated cell–cell fusion and virus infection with CD4-negative, CCR5-positive cells. In contrast, fusion with cells expressing the coreceptors STRL33, GPR1, and GPR15 was CD4-dependent. These results show that CCR5 can serve as a primary receptor for SIV in BCECs and suggest a possible CD4-independent mechanism for blood–brain barrier disruption and viral entry into the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently derived a CD4-independent virus from HIV-1/IIIB, termed IIIBx, which interacts directly with the chemokine receptor CXCR4 to infect cells. To address the underlying mechanism, a cloned Env from the IIIBx swarm (8x) was used to produce soluble gp120. 8x gp120 bound directly to cells expressing only CXCR4, whereas binding of IIIB gp120 required soluble CD4. Using an optical biosensor, we found that CD4-induced (CD4i) epitopes recognized by mAbs 17b and 48d were more exposed on 8x than on IIIB gp120. The ability of 8x gp120 to bind directly to CXCR4 and to react with mAbs 17b and 48d in the absence of CD4 indicated that this gp120 exists in a partially triggered but stable state in which the conserved coreceptor-binding site in gp120, which overlaps with the 17b epitope, is exposed. Substitution of the 8x V3 loop with that from the R5 virus strain BaL resulted in an Env (8x-V3BaL) that mediated CD4-independent CCR5-dependent virus infection and a gp120 that bound to CCR5 in the absence of CD4. Thus, in a partially triggered Env protein, the V3 loop can change the specificity of coreceptor use but does not alter CD4 independence, indicating that these properties are dissociable. Finally, IIIBx was more sensitive to neutralization by HIV-positive human sera, a variety of anti-IIIB gp120 rabbit sera, and CD4i mAbs than was IIIB. The sensitivity of this virus to neutralization and the stable exposure of a highly conserved region of gp120 suggest new strategies for the development of antibodies and small molecule inhibitors to this functionally important domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DC-SIGN, a C-type lectin expressed on the surface of dendritic cells (DCs), efficiently binds and transmits HIVs and simian immunodeficiency viruses to susceptible cells in trans. A DC-SIGN homologue, termed DC-SIGNR, has recently been described. Herein we show that DC-SIGNR, like DC-SIGN, can bind to multiple strains of HIV-1, HIV-2, and simian immunodeficiency virus and transmit these viruses to both T cell lines and human peripheral blood mononuclear cells. Binding of virus to DC-SIGNR was dependent on carbohydrate recognition. Immunostaining with a DC-SIGNR-specific antiserum showed that DC-SIGNR was expressed on sinusoidal endothelial cells in the liver and on endothelial cells in lymph node sinuses and placental villi. The presence of this efficient virus attachment factor on multiple endothelial cell types indicates that DC-SIGNR could play a role in the vertical transmission of primate lentiviruses, in the enabling of HIV to traverse the capillary endothelium in some organs, and in the presentation of virus to CD4-positive cells in multiple locations including lymph nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the recently identified presenilin 1 gene on chromosome 14 cause early onset familial Alzheimer disease (FAD). Herein we describe the expression and analysis of the protein coded by presenilin 1 (PS1) in NT2N neurons, a human neuronal model system. PS1 was expressed using recombinant Semliki Forest virions and detected by introduced antigenic tags or antisera to PS1-derived peptides. Immunoprecipitation revealed two major PS1 bands of approximately 43 and 50 kDa, neither of which were N-glycosylated or O-glycosylated. Immunoreactive PS1 was detected in cell bodies and dendrites of NT2N neurons but not in axons or on the cell surface. PS1 was also detected in BHK cells, where it was also intracellular and colocalized with calnexin, a marker for the rough endoplasmic reticulum. A mutant form of PS1 linked to FAD did not differ from the wild-type protein at the light microscopic level. The model system described here will enable studies of the function of PS1 in human neurons and the role of mutant PS1 in FAD.