4 resultados para DNA-NETWORK
em National Center for Biotechnology Information - NCBI
Resumo:
Two different RNA editing systems have been described in the kinetoplast-mitochondrion of trypanosomatid protists. The first involves the precise insertion and deletion of U residues mostly within the coding regions of maxicircle-encoded mRNAs to produce open reading frames. This editing is mediated by short overlapping complementary guide RNAs encoded in both the maxicircle and the minicircle molecules and involves a series of enzymatic cleavage-ligation steps. The second editing system is a C34 to U34 modification in the anticodon of the imported tRNATrp, thereby permitting the decoding of the UGA stop codon as tryptophan. U-insertion editing probably originated in an ancestor of the kinetoplastid lineage and appears to have evolved in some cases by the replacement of the original pan-edited cryptogene with a partially edited cDNA. The driving force for the evolutionary fixation of these retroposition events was postulated to be the stochastic loss of entire minicircle sequence classes and their encoded guide RNAs upon segregation of the single kinetoplast DNA network into daughter cells at cell division. A large plasticity in the relative abundance of minicircle sequence classes has been observed during cell culture in the laboratory. Computer simulations provide theoretical evidence for this plasticity if a random distribution and segregation model of minicircles is assumed. The possible evolutionary relationship of the C to U and U-insertion editing systems is discussed.
Resumo:
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network.
Resumo:
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.
Resumo:
DNA fragments with stretches of cytosine residues can fold into four-stranded structures in which two parallel duplexes, held together by hemiprotonated cytosine.cytosine+ (C.C+) base pairs, intercalate into each other with opposite polarity. The structural details of this intercalated DNA quadruplex have been assessed by solution NMR and single crystal x-ray diffraction studies of cytosine-rich sequences, including those present in metazoan telomeres. A conserved feature of these structures is the absence of stabilizing stacking interactions between the aromatic ring systems of adjacent C.C+ base pairs from intercalated duplexes. Effective stacking involves only the exocyclic keto groups and amino groups of the cytidine bases. The apparent absence of stability provided by stacking interactions between the bases in this intercalated DNA has prompted us to examine the available structures in detail, in particular with regard to unusual features that could compensate for the lack of base stacking. In addition to base-on-deoxyribose stacking and intra-cytidine C-H...O hydrogen bonds, this analysis reveals the presence of a hitherto unobserved, systematic intermolecular C-H...O hydrogen bonding network between the deoxyribose sugar moieties of antiparallel backbones in the four-stranded molecule.