25 resultados para DNA vaccine delivery

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To enhance the efficacy of DNA malaria vaccines, we evaluated the effect on protection of immunizing with various combinations of DNA, recombinant vaccinia virus, and a synthetic peptide. Immunization of BALB/c mice with a plasmid expressing Plasmodium yoelii (Py) circumsporozoite protein (CSP) induces H-2Kd-restricted CD8+ cytotoxic T lymphocyte (CTL) responses and CD8+ T cell- and interferon (IFN)-γ-dependent protection of mice against challenge with Py sporozoites. Immunization with a multiple antigenic peptide, including the only reported H-2Kd-restricted CD8+ T cell epitope on the PyCSP (PyCSP CTL multiple antigenic peptide) and immunization with recombinant vaccinia expressing the PyCSP induced CTL but only modest to minimal protection. Mice were immunized with PyCSP DNA, PyCSP CTL multiple antigenic peptide, or recombinant vaccinia expressing PyCSP, were boosted 9 wk later with the same immunogen or one of the others, and were challenged. Only mice immunized with DNA and boosted with vaccinia PyCSP (D-V) (11/16: 69%) or DNA (D-D) (7/16: 44%) had greater protection (P < 0.0007) than controls. D-V mice had significantly higher individual levels of antibodies and class I-restricted CTL activity than did D-D mice; IFN-γ production by ELIspot also was higher in D-V than in D-D mice. In a second experiment, three different groups of D-V mice each had higher levels of protection than did D-D mice, and IFN-γ production was significantly greater in D-V than in D-D mice. The observation that priming with PyCSP DNA and boosting with vaccinia-PyCSP is more immunogenic and protective than immunizing with PyCSP DNA alone supports consideration of a similar sequential immunization approach in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrated that peripheral T cell tolerance toward murine melanoma self-antigens gp100 and TRP-2 can be broken by an autologous oral DNA vaccine containing the murine ubiquitin gene fused to minigenes encoding peptide epitopes gp10025–33 and TRP-2181–188. These epitopes contain dominant anchor residues for MHC class I antigen alleles H-2Db and H-2Kb, respectively. The DNA vaccine was delivered by oral gavage by using an attenuated strain of Salmonella typhimurium as carrier. Tumor-protective immunity was mediated by MHC class I antigen-restricted CD8+ T cells that secreted TH1 cytokine IFN-γ and induced tumor rejection and growth suppression after a lethal challenge with B16G3.26 murine melanoma cells. Importantly, the protective immunity induced by this autologous DNA vaccine against murine melanoma cells was at least equal to that achieved through xenoimmunization with the human gp10025–33 peptide, which differs in its three NH2-terminal amino acid residues from its murine counterpart and was previously reported to be clearly superior to an autologous vaccine in inducing protective immunity. The presence of ubiquitin upstream of the minigene proved to be essential for achieving this tumor-protective immunity, suggesting that effective antigen processing and presentation may make it possible to break peripheral T cell tolerance to a self-antigen. This vaccine design might prove useful for future rational designs of other recombinant DNA vaccines targeting tissue differentiation antigens expressed by tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccination of two chimpanzees against hepatitis B virus (HBV) by intramuscular injection of plasmid DNA encoding the major and middle HBV envelope proteins induced group-, subtype- and preS2-specific antibodies. These were initially of IgM isotype, and then they were of IgG (predominantly IgGl) isotype. The chimpanzee injected with 2 mg of DNA attained >100 milli-international units/ml of anti-HBs antibody after one injection and 14,000 milli-international units/ml after four injections. A smaller dose (400 microg) induced lower and transient titers, but a strong anamnestic response occurred 1 year later. Comparison with responses in 23 chimpanzees receiving various antigen-based HBV vaccines suggests that the DNA approach is promising for prophylactic immunization against HBV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unmethylated CpG dinucleotides in particular base contexts (CpG-S motifs) are relatively common in bacterial DNA but are rare in vertebrate DNA. B cells and monocytes have the ability to detect such CpG-S motifs that trigger innate immune defenses with production of Th1-like cytokines. Despite comparable levels of unmethylated CpG dinucleotides, DNA from serotype 12 adenovirus is immune-stimulatory, but serotype 2 is nonstimulatory and can even inhibit activation by bacterial DNA. In type 12 genomes, the distribution of CpG-flanking bases is similar to that predicted by chance. However, in type 2 adenoviral DNA the immune stimulatory CpG-S motifs are outnumbered by a 15- to 30-fold excess of CpG dinucleotides in clusters of direct repeats or with a C on the 5′ side or a G on the 3′ side. Synthetic oligodeoxynucleotides containing these putative neutralizing (CpG-N) motifs block immune activation by CpG-S motifs in vitro and in vivo. Eliminating 52 of the 134 CpG-N motifs present in a DNA vaccine markedly enhanced its Th1-like function in vivo, which was increased further by the addition of CpG-S motifs. Thus, depending on the CpG motif, prokaryotic DNA can be either immune-stimulatory or neutralizing. These results have important implications for understanding microbial pathogenesis and molecular evolution and for the clinical development of DNA vaccines and gene therapy vectors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Successful neonatal immunization of humans has proven difficult. We have evaluated CpG-containing oligonucleotides as an adjuvant for immunization of young mice (1–14 days old) against hepatitis B virus surface antigen. The protein-alum-CpG formulation, like the DNA vaccine, produced seroconversion of the majority of mice immunized at 3 or 7 days of age, compared with 0–10% with the protein-alum or protein-CpG formulations. All animals, from neonates to adults, immunized with the protein-alum vaccine exhibited strong T helper (Th)2-like responses [predominantly IgG1, weak or absent cytotoxic T lymphocytes (CTL)]. Th2-type responses also were induced in young mice with protein-CpG (in 1-, 3-, and 7-day-old mice) and protein-alum-CpG (in 1- and 3-day-old mice) but immunization carried out at older ages gave mixed Th1/Th2 (Th0) responses. DNA vaccines gave Th0-like responses when administered at 1 and 7 days of age and Th1-like (predominantly IgG2a and CTL) responses with 14-day-old or adult mice. Surprisingly, the protein-alum-CpG formulation was better than the DNA vaccine for percentage of seroconversion, speed of appearance, and peak titer of the antibody response, as well as prevalence and strength of CTL. These findings may have important implications for immunization of human infants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To circumvent the need to engineer pathogenic microorganisms as live vaccine-delivery vehicles, a system was developed which allowed for the stable expression of a wide range of protein antigens on the surface of Gram-positive commensal bacteria. The human oral commensal Streptococcus gordonii was engineered to surface express a 204-amino acid allergen from hornet venom (Ag5.2) as a fusion with the anchor region of the M6 protein of Streptococcus pyogenes. The immunogenicity of the M6-Ag5.2 fusion protein was assessed in mice inoculated orally and intranasally with a single dose of recombinant bacteria, resulting in the colonization of the oral/pharyngeal mucosa for 10-11 weeks. A significant increase of Ag5.2-specific IgA with relation to the total IgA was detected in saliva and lung lavages when compared with mice colonized with wild-type S. gordonii. A systemic IgG response to Ag5.2 was also induced after oral colonization. Thus, recombinant Gram-positive commensal bacteria may be a safe and effective way of inducing a local and systemic immune response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective gene therapy for lung tissue requires the use of efficient vehicles to deliver the gene of interest into lung cells. When plasmid DNA encoding chloramphenicol acetyltransferase (CAT) was administered intranasally to BALB/c mice without carrier lipids, CAT activity was detected in mouse lung extracts. Plasmid DNA delivered with optimally formulated commercially available transfection reagents expressed up to 10-fold more CAT activity in lung than observed with naked DNA alone. Liposome formulations consisting of (+/-)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis (dodecyloxy)-1-propanaminium bromide (GAP-DLRIE) plus the neutral colipid dioleoylphosphatidylethanolamine (DOPE) enhanced CAT expression by more than 100-fold relative to plasmid DNA alone. A single administration of GAP-DLRIE liposome-CAT DNA complexes to mouse lung elicited peak expression at days 1-4 posttransfection, followed by a gradual return to baseline by day 21 postadministration. Readministration of GAP-DLRIE liposome CAT complexes at day 21 led to another transient peak of reporter gene expression. Histological examination of lungs treated with GAP-DLRIE complexed beta-galactosidase DNA revealed that alveolar epithelial cells were the primary locus of expression and that up to 1% of all alveoli contained epithelial cells expressing the transgene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA. This lipid formulation, termed GS 2888 cytofectin, (i) efficiently transfects ODNs and plasmids into many cell types in the presence or absence of 10% serum in the medium, (ii) uses a 4- to 10-fold lower concentration of the agent as compared to the commercially available Lipofectin liposome, and (iii) is > or = 20-fold more effective at eliciting antisense effects in the presence of serum when compared to Lipofectin. Here we show antisense effects using GS 2888 cytofectin together with C-5 propynyl pyrimidine phosphorothioate ODNs in which we achieve inhibition of gene expression using low nanomolar concentrations of ODN. This agent expands the utility of antisense ODNs for their use in understanding gene function and offers the potential for its use in DNA delivery applications in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Import of DNA into mammalian nuclei is generally inefficient. Therefore, one of the current challenges in human gene therapy is the development of efficient DNA delivery systems. Here we tested whether bacterial proteins could be used to target DNA to mammalian cells. Agrobacterium tumefaciens, a plant pathogen, efficiently transfers DNA as a nucleoprotein complex to plant cells. Agrobacterium-mediated T-DNA transfer to plant cells is the only known example for interkingdom DNA transfer and is widely used for plant transformation. Agrobacterium virulence proteins VirD2 and VirE2 perform important functions in this process. We reconstituted complexes consisting of the bacterial virulence proteins VirD2, VirE2, and single-stranded DNA (ssDNA) in vitro. These complexes were tested for import into HeLa cell nuclei. Import of ssDNA required both VirD2 and VirE2 proteins. A VirD2 mutant lacking its C-terminal nuclear localization signal was deficient in import of the ssDNA–protein complexes into nuclei. Import of VirD2–ssDNA–VirE2 complexes was fast and efficient, and was shown to depended on importin α, Ran, and an energy source. We report here that the bacterium-derived and plant-adapted protein–DNA complex, made in vitro, can be efficiently imported into mammalian nuclei following the classical importin-dependent nuclear import pathway. This demonstrates the potential of our approach to enhance gene transfer to animal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally thought that an effective vaccine to prevent HIV-1 infection should elicit both strong neutralizing antibody and cytotoxic T lymphocyte responses. We recently demonstrated that potent, boostable, long-lived HIV-1 envelope (Env)-specific cytotoxic T lymphocyte responses can be elicited in rhesus monkeys using plasmid-encoded HIV-1 env DNA as the immunogen. In the present study, we show that the addition of HIV-1 Env protein to this regimen as a boosting immunogen generates a high titer neutralizing antibody response in this nonhuman primate species. Moreover, we demonstrate in a pilot study that immunization with HIV-1 env DNA (multiple doses) followed by a final immunization with HIV-1 env DNA plus HIV-1 Env protein (env gene from HXBc2 clone of HIV IIIB; Env protein from parental HIV IIIB) completely protects monkeys from infection after i.v. challenge with a chimeric virus expressing HIV-1 env (HXBc2) on a simian immmunodeficiency virusmac backbone (SHIV-HXBc2). The potent immunity and protection seen in these pilot experiments suggest that a DNA prime/DNA plus protein boost regimen warrants active investigation as a vaccine strategy to prevent HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine/plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine/plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine/plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 Å, irrespective of the lipid/DNA ratio. The most active lipopolyamine/DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains.