75 resultados para DNA mutation
em National Center for Biotechnology Information - NCBI
Resumo:
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.
Resumo:
Several microbial systems have been shown to yield advantageous mutations in slowly growing or nongrowing cultures. In one assay system, the stationary-phase mutation mechanism differs from growth-dependent mutation, demonstrating that the two are different processes. This system assays reversion of a lac frameshift allele on an F′ plasmid in Escherichia coli. The stationary-phase mutation mechanism at lac requires recombination proteins of the RecBCD double-strand-break repair system and the inducible error-prone DNA polymerase IV, and the mutations are mostly −1 deletions in small mononucleotide repeats. This mutation mechanism is proposed to occur by DNA polymerase errors made during replication primed by recombinational double-strand-break repair. It has been suggested that this mechanism is confined to the F plasmid. However, the cells that acquire the adaptive mutations show hypermutation of unrelated chromosomal genes, suggesting that chromosomal sites also might experience recombination protein-dependent stationary-phase mutation. Here we test directly whether the stationary-phase mutations in the bacterial chromosome also occur via a recombination protein- and pol IV-dependent mechanism. We describe an assay for chromosomal mutation in cells carrying the F′ lac. We show that the chromosomal mutation is recombination protein- and pol IV-dependent and also is associated with general hypermutation. The data indicate that, at least in these male cells, recombination protein-dependent stationary-phase mutation is a mechanism of general inducible genetic change capable of affecting genes in the bacterial chromosome.
Resumo:
Genotoxins, such as polycyclic aromatic compounds, are ubiquitous in urban and industrial environments. Our understanding of the role that these chemicals play in generating DNA sequence mutations is predominantly derived from laboratory studies with specific genotoxins or extracts of contaminants from environmental media. Most assays are not indicative of the germinal effects of exposure in situ to complex mixtures of common environmental mutagens. Using multilocus DNA fingerprinting, we found the mutation rate in herring gulls inhabiting a heavily industrialized urban harbor (Hamilton Harbour, Ontario) to be more than twice as high as three rural sites: Kent Island, Bay of Fundy; Chantry Island, Lake Huron; and Presqu'ile Provincial Park in Lake Ontario. Overall we found a mutation rate of 0.017 +/- 0.004 per offspring band in Hamilton, 0.006 +/- 0.002 at Kent Island, 0.002 +/- 0.002 from Chantry Island, and 0.004 +/- 0.002 from Presqu'ile Provincial Park. The mutation rate from the rural sites (pooled) was significantly lower than the rate observed in Hamilton Harbour (Fisher's exact test, two-tailed; P = 0.0006). These minisatellite DNA mutations may be important biomarkers for heritable genetic changes resulting from in situ exposure to environmental genotoxins in a free-living vertebrate species.
Resumo:
DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse.
Resumo:
A combination of psoralen and ultraviolet A radiation (PUVA) is widely used in the treatment of psoriasis. However, PUVA treatment increases the risk of developing skin cancer in psoriasis patients and induces skin cancer in mice. Since the DNA damage induced by PUVA is quite different from that induced by UV, we investigated whether PUVA-induced mouse skin cancers display carcinogen-specific mutations in the p53 tumor suppressor gene. The results indicated that 10 of 13 (77%) PUVA-induced skin tumors contained missense mutations predominantly at exons 6 and 7. In contrast, tumor-adjacent, PUVA-exposed skin from tumor-bearing animals did not exhibit p53 mutation in exons 4-8. Interestingly, about 40% of all mutations in PUVA-induced skin tumors occurred at 5'-TA sites, and an equal number of mutations occurred at one base flanking 5'TA or 5'-TAT sites. Since PUVA induces DNA cross-links exclusively at these sites and since UV "signature" mutations were rarely detected in PUVA-induced skin cancers, we can conclude that PUVA acts as a carcinogen by inducing unique PUVA signature mutations in p53. This finding may have implications for identifying the etiology of skin cancer in psoriasis patients who have undergone PUVA therapy.
Resumo:
Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.
Resumo:
The role of Escherichia coli DNA polymerase (Pol) II in producing or avoiding mutations was investigated by replacing the chromosomal Pol II gene (polB+) by a gene encoding an exonuclease-deficient mutant Pol II (polBex1). The polBex1 allele increased adaptive mutations on an episome in nondividing cells under lactose selection. The presence of a Pol III antimutator allele (dnaE915) reduced adaptive mutations in both polB+ cells and cells deleted for polB (polB delta 1) to below the wild-type level, suggesting that both Pol II and Pol III are synthesizing episomal DNA in nondividing cells but that in wild-type cells Pol III generates the adaptive mutations. The adaptive mutations were mainly -1 frame-shifts occurring in short homopolymeric runs and were similar in wild-type, polB delta 1, and polBex1 strains. Mutations produced by both Pol III and Pol II ex1 were corrected by the mutHLS mismatch repair system.
Resumo:
The murine Pax-3 protein contains two DNA-binding domains, a paired domain and a homeodomain, and alterations in the Pax-3 gene are responsible for the neural tube defects observed in the Splotch (Sp) mouse mutant. Of five Sp alleles, Splotch-delayed (Spd) is the only one that encodes a full-length Pax-3 protein, containing a single glycine-to-arginine substitution within the paired domain. To better understand the consequence of this mutation on Pax-3 function, we have analyzed the DNA-binding properties of wild-type and Spd Pax-3, using oligonucleotides that bind primarily to the paired domain (e5) or exclusively to the homeodomain (P2). Wild-type Pax-3 was found to bind e5 in a specific manner. In contrast, the Spd mutation reduced binding of Pax-3 to e5 17-fold, revealing a defect in DNA binding by the paired domain. Surprisingly, the Spd mutation also drastically reduced the homeodomain-specific binding to P2 by 21-fold when compared with the wild-type protein. Interestingly, a deletion which removes the Spd mutation was found to restore P2-binding activity, suggesting that within the full-length Pax-3 protein, the paired domain and homeodomain may interact. We conclude, therefore, that the Spd mutation is phenotyically expressed in vitro by a defect in the DNA-binding properties of Pax-3. Furthermore, it is apparent that the paired domain and homeodomain of Pax-3 do not function as independent domains, since a mutation in the former impairs the DNA-binding activity of the latter.
Resumo:
Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.
Resumo:
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.
Resumo:
The structural and DNA binding behavior is described for an analog of the vnd/NK-2 homeodomain, which contains a single amino acid residue alanine to threonine replacement in position 35 of the homeodomain. Multidimensional nuclear magnetic resonance, circular dichroism, and electrophoretic gel retardation assays were carried out on recombinant 80-aa residue proteins that encompass the wild-type and mutant homeodomains. The mutant A35T vnd/NK-2 homeodomain is unable to adopt a folded conformation free in solution at temperatures down to −5°C in contrast to the behavior of the corresponding wild-type vnd/NK-2 homeodomain, which is folded into a functional three-dimensional structure below 25°C. The A35T vnd/NK-2 binds specifically to the vnd/NK-2 target DNA sequence, but with an affinity that is 50-fold lower than that of the wild-type homeodomain. Although the three-dimensional structure of the mutant A35T vnd/NK-2 in the DNA bound state shows characteristic helix–turn–helix behavior similar to that of the wild-type homeodomain, a notable structural deviation in the mutant A35T analog is observed for the amide proton of leucine-40. The wild-type homeodomain forms an unusual i,i-5 hydrogen bond with the backbone amide oxygen of residue 35. In the A35T mutant this amide proton resonance is shifted upfield by 1.27 ppm relative to the resonance frequency for the wild-type analog, thereby indicating a significant alteration of this i,i-5 hydrogen bond.
Resumo:
A genetic locus suppressing DNA underreplication in intercalary heterochromatin (IH) and pericentric heterochromatin (PH) of the polytene chromosomes of Drosophila melanogaster salivary glands, has been described. Found in the In(1)scV2 strain, the mutation, designated as Su(UR)ES, was located on chromosome 3L at position 34.8 and cytologically mapped to region 68A3-B4. A cytological phenotype was observed in the salivary gland chromosomes of larvae homozygous and hemizygous for Su(UR)ES: (i) in the IH regions, that normally are incompletely polytenized and so they often break to form “weak points,” underreplication is suppressed, breaks and ectopic contacts disappear; (ii) the degree of polytenization in PH grows higher. That is why the regions in chromosome arm basements, normally β-heterochromatic, acquire a distinct banding pattern, i.e., become euchromatic by morphological criteria; (iii) an additional bulk of polytenized material arises between the arms of chromosome 3 to form a fragment with a typical banding pattern. Chromosome 2 PH reveals additional α-heterochromatin. Su(UR)ES does not affect the viability, fertility, or morphological characters of the imago, and has semidominant expression in the heterozygote and distinct maternal effect. The results obtained provide evidence that the processes leading to DNA underreplication in IH and PH are affected by the same genetic mechanism.
Resumo:
Mutations are introduced into rearranged Ig variable genes at a frequency of 10−2 mutations per base pair by an unknown mechanism. Assuming that DNA repair pathways generate or remove mutations, the frequency and pattern of mutation will be different in variable genes from mice defective in repair. Therefore, hypermutation was studied in mice deficient for either the DNA nucleotide excision repair gene Xpa or the mismatch repair gene Pms2. High levels of mutation were found in variable genes from XPA-deficient and PMS2-deficient mice, indicating that neither nucleotide excision repair nor mismatch repair pathways generate hypermutation. However, variable genes from PMS2-deficient mice had significantly more adjacent base substitutions than genes from wild-type or XPA-deficient mice. By using a biochemical assay, we confirmed that tandem mispairs were repaired by wild-type cells but not by Pms2−/− human or murine cells. The data indicate that tandem substitutions are produced by the hypermutation mechanism and then processed by a PMS2-dependent pathway.
Resumo:
Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.
Resumo:
Hereditary tyrosinemia type I (HT1) is an autosomal recessive inborn error of metabolism caused by the deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolism pathway. This defect results in accumulation of succinylacetone (SA) that reacts with amino acids and proteins to form stable adducts via Schiff base formation, lysine being the most reactive amino acid. HT1 patients surviving beyond infancy are at considerable risk for the development of hepatocellular carcinoma, and a high level of chromosomal breakage is observed in HT1 cells, suggesting a defect in the processing of DNA. In this paper we show that the overall DNA-ligase activity is low in HT1 cells (about 20% of the normal value) and that Okazaki fragments are rejoined at a reduced rate compared with normal fibroblasts. No mutation was found by sequencing the ligase I cDNA from HT1 cells, and the level of expression of the ligase I mRNA was similar in normal and HT1 fibroblasts, suggesting the presence of a ligase inhibitor. SA was shown to inhibit in vitro the overall DNA-ligase activity present in normal cell extracts. The activity of purified T4 DNA-ligase, whose active site is also a lysine residue, was inhibited by SA in a dose-dependent manner. These results suggest that accumulation of SA reduces the overall ligase activity in HT1 cells and indicate that metabolism errors may play a role in regulating enzymatic activities involved in DNA replication and repair.