3 resultados para DNA fingerprinting

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotoxins, such as polycyclic aromatic compounds, are ubiquitous in urban and industrial environments. Our understanding of the role that these chemicals play in generating DNA sequence mutations is predominantly derived from laboratory studies with specific genotoxins or extracts of contaminants from environmental media. Most assays are not indicative of the germinal effects of exposure in situ to complex mixtures of common environmental mutagens. Using multilocus DNA fingerprinting, we found the mutation rate in herring gulls inhabiting a heavily industrialized urban harbor (Hamilton Harbour, Ontario) to be more than twice as high as three rural sites: Kent Island, Bay of Fundy; Chantry Island, Lake Huron; and Presqu'ile Provincial Park in Lake Ontario. Overall we found a mutation rate of 0.017 +/- 0.004 per offspring band in Hamilton, 0.006 +/- 0.002 at Kent Island, 0.002 +/- 0.002 from Chantry Island, and 0.004 +/- 0.002 from Presqu'ile Provincial Park. The mutation rate from the rural sites (pooled) was significantly lower than the rate observed in Hamilton Harbour (Fisher's exact test, two-tailed; P = 0.0006). These minisatellite DNA mutations may be important biomarkers for heritable genetic changes resulting from in situ exposure to environmental genotoxins in a free-living vertebrate species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A typing method for bacteria was developed and applied to several species, including Escherichia coli and Actinobacillus actinomycetemcomitans. Total genomic DNA was digested with a restriction endonuclease, and fragments were enabled with [alpha-32P]dATP by using the Klenow fragment of DNA polymerase and separated by electrophoresis in 6% polyacrylamide/8 M urea (sequencing gel). Depending on the restriction endonuclease and the bacterium, the method produced approximately 30-50 well-separated fragments in the size range of 100-400 nucleotides. For A. actinomycetemcomitans, all strains had bands in common. Nevertheless, many polymorphisms could be observed, and the 31 strains tested could be classified into 29 distinct types. Furthermore, serotype-specific fragments could be assigned for the three serotypes investigated. The method described is very sensitive, allowing more distinct types to be distinguished than other commonly used typing methods. When the method was applied to 10 other clinically relevant bacterial species, both species-specific bands and strain-specific bands were found. Isolates from different locations of one patient showed indistinguishable patterns. Computer-assisted analysis of the DNA fingerprints allowed the determination of similarity coefficients. It is concluded that genomic fingerprinting by restriction fragment end labeling (RFEL) is a powerful and generally applicable technique to type bacterial species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic surveys of parthenogenetic vertebrate populations have demonstrated a common pattern of relatively high degrees of clonal variation and the coexistence of numerous clones. In striking contrast, the Phoxinus eos/Phoxinus neogaeus/hybrid gynogen complex of cyprinid fishes exhibits no clonal variation within a northern Minnesota drainage characterized by successional beaver ponds. Gynogens were sampled from three habitats in each of four different pond types in a single drainage in Voyageurs National Park, Minnesota. The abundance of gynogens relative to sexual dace varied with pond type, being least common in deep upland ponds and most common in shallow, collapsed, lowland ponds (13.4% and 48.6%, respectively). Simple-sequence multilocus DNA fingerprinting of 464 individual gynogens detected one, and only one, clone. DNA fingerprints, generated sequentially by using three oligonucleotide probes, (CAC)5, (GACA)4, and the Jeffreys' 33.15 probe, all revealed the same unprecedented lack of variation. The extreme lack of clonal diversity in these gynogens across a range of habitat types does not fit the general pattern of high clonal diversity found within populations of other vertebrate parthenogens.