42 resultados para DNA breaks

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA–ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA–Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA–ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DNA damage is known to trigger key cellular defense pathways such as those involved in DNA repair. Here we provide evidence for a previously unrecognized pathway regulating transcription in response to DNA damage and show that this regulation is mediated by the abundant nuclear enzyme poly(ADP-ribose) polymerase. We found that poly(ADP-ribose) polymerase reduced the rate of transcription elongation by RNA polymerase II, suggesting that poly(ADP-ribose) polymerase negatively regulates transcription, possibly through the formation of poly(ADP-ribose) polymerase–RNA complexes. In damaged cells, poly(ADP-ribose) polymerase binds to DNA breaks and automodifies itself in the presence of NAD+, resulting in poly(ADP-ribose) polymerase inactivation. We found that automodification of poly(ADP-ribose) polymerase in response to DNA damage resulted in the up-regulation of transcription, presumably because automodified poly(ADP-ribose) polymerase molecules were released from transcripts, thereby relieving the block on transcription. Because agents that damage DNA damage RNA as well, up-regulation of RNA synthesis in response to DNA damage may provide cells with a mechanism to compensate for the loss of damaged transcripts and may be critical for cell survival after exposure to DNA-damaging agents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluoroquinolones are antibacterial agents that attack DNA gyrase and topoisomerase IV on chromosomal DNA. The existence of two fluoroquinolone targets and stepwise accumulation of resistance suggested that new quinolones could be found that would require cells to obtain two topoisomerase mutations to display resistance. For wild-type cells to become resistant, the two mutations must be acquired concomitantly. That is expected to occur infrequently. To identify such compounds, fluoroquinolones were tested for the ability to kill a moderately resistant gyrase mutant. Compounds containing a C8-methoxyl group were particularly lethal, and incubation of wild-type cultures on agar containing C8-methoxyl fluoroquinolones produced no resistant mutant, whereas thousands arose during comparable treatment with control compounds lacking the C8 substituent. When the test strain contained a preexisting topoisomerase IV mutation, which by itself conferred no resistance, equally high numbers of resistant mutants were obtained for C8-methoxyl and control compounds. Thus C8-methoxyl fluoroquinolones required two mutations for expression of resistance. Although highly lethal, C8-methoxyl fluoroquinolones were not more effective than C8-H controls at blocking bacterial growth. Consequently, quinolone action involves two events, which we envision as formation of drug–enzyme–DNA complexes followed by release of lethal double-strand DNA breaks. Release of DNA breaks, which must occur less frequently than complex formation, is probably the process stimulated by the C8-methoxyl group. Understanding this stimulation should provide insight into intracellular quinolone action and contribute to development of fluoroquinolones that prevent selection of resistant bacteria.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases δ and ɛ, is involved in DNA replication as well as in diverse DNA repair pathways. In quiescent cells, UV light-induced bulky DNA damage triggers the transition of PCNA from a soluble to an insoluble chromatin-bound form, which is intimately associated with the repair synthesis by polymerases δ and ɛ. In this study, we investigated the efficiency of PCNA complex formation in response to ionizing radiation-induced DNA strand breaks in normal and radiation-sensitive Ataxia telangiectasia (AT) cells by immunofluorescence and western blot techniques. Exposure of normal cells to γ-rays rapidly triggered the formation of PCNA foci in a dose-dependent manner in the nuclei and the PCNA foci (40–45%) co-localized with sites of repair synthesis detected by bromodeoxyuridine labeling. The chromatin-bound PCNA gradually declined with increasing post-irradiation times and almost reached the level of unirradiated cells by 6 h. The PCNA foci formed after γ-irradiation was resistant to high salt extraction and the chromatin association of PCNA was lost after DNase I digestion. Interestingly, two radiosensitive primary fibroblast cell lines, derived from AT patients harboring homozygous mutations in the ATM gene, displayed an efficient PCNA redistribution after γ-irradiation. We also analyzed the PCNA complex induced by a radiomimetic agent, Bleomycin (BLM), which produces predominantly single- and double-strand DNA breaks. The efficiency and the time course of PCNA complex induced by BLM were identical in both normal and AT cells. Our study demonstrates for the first time that the ATM gene product is not required for PCNA complex assembly in response to DNA strand breaks. Additionally, we observed an increased interaction of PCNA with the Ku70 and Ku80 heterodimer after DNA damage, suggestive of a role for PCNA in the non-homologous end-joining repair pathway of DNA strand breaks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DNA breaks occur during many processes in mammalian cells, including recombination, repair, mutagenesis and apoptosis. Here we report a simple and rapid method for assaying DNA breaks and identifying DNA breaksites. Breaksites are first tagged and amplified by ligation-mediated PCR (LM-PCR), using nested PCR primers to increase the specificity and sensitivity of amplification. Breaksites are then mapped by batch sequencing LM-PCR products. This allows easy identification of multiple breaksites per reaction without tedious fractionation of PCR products by gel electrophoresis or cloning. Breaksite batch mapping requires little starting material and can be used to identify either single- or double-strand breaks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rad54 and Rad51 are important proteins for the repair of double-stranded DNA breaks by homologous recombination in eukaryotes. As previously shown, Rad51 protein forms nucleoprotein filaments on single-stranded DNA, and Rad54 protein directly interacts with such filaments to enhance synapsis, the homologous pairing with a double-stranded DNA partner. Here we demonstrate that Saccharomyces cerevisiae Rad54 protein has an additional role in the postsynaptic phase of DNA strand exchange by stimulating heteroduplex DNA extension of established joint molecules in Rad51/Rpa-mediated DNA strand exchange. This function depended on the ATPase activity of Rad54 protein and on specific protein:protein interactions between the yeast Rad54 and Rad51 proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arabidopsis thaliana mutants originally isolated as hypersensitive to irradiation were screened for the ability to be transformed by Agrobacterium transferred DNA (T-DNA). One of four UV-hypersensitive mutants and one of two gamma-hypersensitive mutants tested showed a significant reduction in the frequency of stable transformants compared with radioresistant controls. In a transient assay for T-DNA transfer independent of genomic integration, both mutant lines took up and expressed T-DNA as efficiently as parental lines. These lines are therefore deficient specifically in stable T-DNA integration and thus provide direct evidence for the role of a plant function in that process. As radiation hypersensitivity suggests a deficiency in repair of DNA damage, that plant function may be one that is also involved in DNA repair, possibly, from other evidence, in repair of double-strand DNA breaks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Telomerase inhibition has been touted as a novel cancer-selective therapeutic goal based on the observation of high telomerase levels in most cancers and the importance of telomere maintenance in long-term cellular growth and survival. Here, the impact of telomere dysfunction on chemotherapeutic responses was assessed in normal and neoplastic cells derived from telomerase RNA null (mTERC−/−) mice. Telomere dysfunction, rather than telomerase per se, was found to be the principal determinant governing chemosensitivity specifically to agents that induced double-stranded DNA breaks (DSB). Enhanced chemosensitivity in telomere dysfunctional cells was linked to therapy-induced fragmentation and multichromosomal fusions, whereas telomerase reconstitution restored genomic integrity and chemoresistance. Loss of p53 function muted the cytotoxic effects of DSB-inducing agents in cells with telomere dysfunction. Together, these results point to the combined use of DSB-inducing agents and telomere maintenance inhibition as an effective anticancer therapeutic approach particularly in cells with intact p53-dependent checkpoint responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most organisms homologous recombination is vital for the proper segregation of chromosomes during meiosis, the formation of haploid sex cells from diploid precursors. This review compares meiotic recombination and chromosome segregation in the fission yeast Schizosaccharomyces pombe and the distantly related budding yeast Saccharomyces cerevisiae, two especially tractable microorganisms. Certain features, such as the occurrence of DNA breaks associated with recombination, appear similar, suggesting that these features may be common in eukaryotes. Other features, such as the role of these breaks and the ability of chromosomes to segregate faithfully in the absence of recombination, appear different, suggesting multiple solutions to the problems faced in meiosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase (PARP) transfers ADP ribose groups from NAD+ to nuclear proteins after activation by DNA strand breaks. PARP overactivation by massive DNA damage causes cell death via NAD+ and ATP depletion. Heretofore, PARP has been thought to be inactive under basal physiologic conditions. We now report high basal levels of PARP activity and DNA strand breaks in discrete neuronal populations of the brain, in ventricular ependymal and subependymal cells and in peripheral tissues. In some peripheral tissues, such as skeletal muscle, spleen, heart, and kidney, PARP activity is reduced only partially in mice with PARP-1 gene deletion (PARP-1−/−), implicating activity of alternative forms of PARP. Glutamate neurotransmission involving N-methyl-d-aspartate (NMDA) receptors and neuronal nitric oxide synthase (nNOS) activity in part mediates neuronal DNA strand breaks and PARP activity, which are diminished by NMDA antagonists and NOS inhibitors and also diminished in mice with targeted deletion of nNOS gene (nNOS−/−). An increase in NAD+ levels after treatment with NMDA antagonists or NOS inhibitors, as well as in nNOS−/− mice, indicates that basal glutamate-PARP activity regulates neuronal energy dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After ionising radiation double-strand breaks (dsb) are lethal if not repaired or misrepaired. Cell killing is greatly enhanced by hyperthermia and it is questioned here whether heat not only affects dsb repair capacity but also fidelity in a chromosomal context. dsb repair experiments were designed so as to mainly score non-homologous end joining, while homologous recombination was largely precluded. Human male G0 fibroblasts were either preheated (45°C, 20 min) or not before X-irradiation. dsb induction and repair were measured by conventional gel electrophoresis and an assay combining restriction digestion using a rare cutting enzyme (NotI) and Southern hybridisation, which detects large chromosomal rearrangements (>100 kb). dsb induction rate in an X-chromosomal NotI fragment was 4.8 × 10–3 dsb/Gy/Mb. Similar values were found for the genome overall and also when cells were preheated. After 50 Gy, fibroblasts were competent to largely restore the original restriction fragment size. Five per cent of dsb remained non-rejoined and 14% were misrejoined. Correct restitution of restriction fragments occurred preferably during the first hour but continued at a slow rate for 12–16 h. In addition, dsb appeared to misrejoin throughout the entire repair period. After hyperthermia the fractions of non-rejoined and misrejoined dsb were similarly increased to 13 and 51%, respectively. It is suggested that heat increases the probability of dsb being incorrectly rejoined but it is not likely to interfere with one dsb repair pathway in particular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Xenopus egg extracts, DNA strand breaks (nicks) located 3' or 5' to a mismatch cause an overall 3-fold stimulation of the repair of the mismatch in circular heteroduplex DNA molecules. The increase in mismatch repair is almost entirely due to an increase in repair of the nicked strand, which is stimulated 5-fold. Repair synthesis is centered to the mismatch site, decreases symmetrically on both sides, and its position is not significantly altered by the presence of the nick. Therefore, it appears that in the Xenopus germ cells, the mismatch repair system utilizes nicks as signals for the induction and direction of mismatch repair, but not as the start or end point for excision and resynthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During meiosis in Saccharomyces cerevisiae, the first chemical step in homologous recombination is the occurrence of site-specific DNA double-strand breaks (DSBs). In wild-type cells, these breaks undergo resection of their 5' strand termini to yield molecules with 3' single-stranded tails. We have further characterized the breaks that accumulate in rad50S mutant stains defective in DSB resection. We find that these DSBs are tightly associated with protein via what appears to be a covalent linkage. When genomic DNA is prepared from meiotic rad50S cultures without protease treatment steps, the restriction fragments diagnostic of DSBs selectively partition to the organic-aqueous interphase in phenol extractions and band at lower than normal density in CsCl density gradients. Selective partitioning and decreased buoyant density are abolished if the DNA is treated with proteinase K prior to analysis. Similar results are obtained with sae2-1 mutant strains, which have phenotypes identical to rad50S mutants. The protein is bound specifically to the 5' strand termini of DSBs and is present at both 5' ends in at least a fraction of breaks. The stability of the complex to various protein denaturants and the strand specificity of the attachment are most consistent with a covalent linkage to DSB termini. We propose that the DSB-associated protein is the catalytic subunit of the meiotic recombination initiation nuclease and that it cleaves DNA via a covalent protein-DNA intermediate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic locus suppressing DNA underreplication in intercalary heterochromatin (IH) and pericentric heterochromatin (PH) of the polytene chromosomes of Drosophila melanogaster salivary glands, has been described. Found in the In(1)scV2 strain, the mutation, designated as Su(UR)ES, was located on chromosome 3L at position 34.8 and cytologically mapped to region 68A3-B4. A cytological phenotype was observed in the salivary gland chromosomes of larvae homozygous and hemizygous for Su(UR)ES: (i) in the IH regions, that normally are incompletely polytenized and so they often break to form “weak points,” underreplication is suppressed, breaks and ectopic contacts disappear; (ii) the degree of polytenization in PH grows higher. That is why the regions in chromosome arm basements, normally β-heterochromatic, acquire a distinct banding pattern, i.e., become euchromatic by morphological criteria; (iii) an additional bulk of polytenized material arises between the arms of chromosome 3 to form a fragment with a typical banding pattern. Chromosome 2 PH reveals additional α-heterochromatin. Su(UR)ES does not affect the viability, fertility, or morphological characters of the imago, and has semidominant expression in the heterozygote and distinct maternal effect. The results obtained provide evidence that the processes leading to DNA underreplication in IH and PH are affected by the same genetic mechanism.