7 resultados para DNA -- chemistry

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the charge separation rate and yield exhibiting an exponential dependence ∝ exp(−βR) on the d-a distance (R). Resonance coupling results in mechanism ii with the charge separation lifetime τ ∝ Nη and yield Y ≃ (1 + δ̄ Nη)−1 exhibiting a weak (algebraic) N and distance dependence. The power parameter η is determined by charge hopping random walk. Energetic control of the charge migration mechanism is exerted by the energetics of the ion pair state d∓B1±B2 … BNa relative to the electronically excited donor doorway state d*B1B2 … BNa. The realization of charge separation via superexchange or hopping is determined by the base sequence within the bridge. Our energetic–dynamic relations, in conjunction with the energetic data for d*/d− and for B/B+, determine the realization of the two distinct mechanisms in different hole donor systems, establishing the conditions for “chemistry at a distance” after charge transport in DNA. The energetic control of the charge migration mechanisms attained by the sequence specificity of the bridge is universal for large molecular-scale systems, for proteins, and for DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil–DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme–DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization (MALDI) time of flight mass spectrometry was used to detect and order DNA fragments generated by Sanger dideoxy cycle sequencing. This was accomplished by improving the sensitivity and resolution of the MALDI method using a delayed ion extraction technique (DE-MALDI). The cycle sequencing chemistry was optimized to produce as much as 100 fmol of each specific dideoxy terminated fragment, generated from extension of a 13-base primer annealed on 40- and 50-base templates. Analysis of the resultant sequencing mixture by DE-MALDI identified the appropriate termination products. The technique provides a new non-gel-based method to sequence DNA which may ultimately have considerable speed advantages over traditional methodologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoramide mustard-induced DNA interstrand cross-links were studied both in vitro and by computer simulation. The local determinants for the formation of phosphoramide mustard-induced DNA interstrand cross-links were defined by using different pairs of synthetic oligonucleotide duplexes, each of which contained a single potentially cross-linkable site. Phosphoramide mustard was found to cross-link dG to dG at a 5'-d(GAC)-3'. The structural basis for the formation of this 1,3 cross-link was studied by molecular dynamics and quantum chemistry. Molecular dynamics indicated that the geometrical proximity of the binding sites also favored a 1,3 dG-to-dG linkage over a 1,2 dG-to-dG linkage in a 5'-d(GCC)-3' sequence. While the enthalpies of 1,2 and 1,3 mustard cross-linked DNA were found to be very close, a 1,3 structure was more flexible and may therefore be in a considerably higher entropic state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automated oligonucleotide synthesizer has been developed that can simultaneously and rapidly synthesize up to 96 different oligonucleotides in a 96-well microtiter format using phosphoramidite synthesis chemistry. A modified 96-well plate is positioned under reagent valve banks, and appropriate reagents are delivered into individual wells containing the growing oligonucleotide chain, which is bound to a solid support. Each well has a filter bottom that enables the removal of spent reagents while retaining the solid support matrix. A seal design is employed to control synthesis environment and the entire instrument is automated via computer control. Synthesis cycle times for 96 couplings are < 11 min, allowing a plate of 96 20-mers to be synthesized in < 5 hr. Oligonucleotide synthesis quality is comparable to commercial machines, with average coupling efficiencies routinely > 98% across the entire 96-well plate. No significant well-to-well variations in synthesis quality have been observed in > 6000 oligonucleotides synthesized to date. The reduced reagent usage and increased capacity allow the overall synthesis cost to drop by at least a factor of 10. With the development of this instrument, it is now practical and cost-effective to synthesize thousands to tens of thousands of oligonucleotides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.