26 resultados para DISEASE GENE SH2D1A
em National Center for Biotechnology Information - NCBI
Resumo:
We have introduced a targeted mutation in SH2D1A/DSHP/SAP, the gene responsible for the human genetic disorder X-linked lymphoproliferative disease (XLP). SLAM-associated protein (SAP)-deficient mice had normal lymphocyte development, but on challenge with infectious agents, recapitulated features of XLP. Infection of SAP− mice with lymphocyte choriomeningitis virus (LCMV) or Toxoplasma gondii was associated with increased T cell activation and IFN-γ production, as well as a reduction of Ig-secreting cells. Anti-CD3-stimulated splenocytes from uninfected SAP− mice produced increased IFN-γ and decreased IL-4, findings supported by decreased serum IgE levels in vivo. The Th1 skewing of these animals suggests that cytokine misregulation may contribute to phenotypes associated with mutation of SH2D1A/SAP.
Resumo:
Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of brains of patients with Huntington disease (HD). Transgenic mice that express exon 1 of an abnormal human HD gene (line R6/2) develop neurologic symptoms at 9–11 weeks of age through an unknown mechanism. Analysis of glutamate receptors (GluRs) in symptomatic 12-week-old R6/2 mice revealed decreases compared with age-matched littermate controls in the type 1 metabotropic GluR (mGluR1), mGluR2, mGluR3, but not the mGluR5 subtype of G protein-linked mGluR, as determined by [3H]glutamate receptor binding, protein immunoblotting, and in situ hybridization. Ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors were also decreased, while N-methyl-d-aspartic acid receptors were not different compared with controls. Other neurotransmitter receptors known to be affected in HD were also decreased in R6/2 mice, including dopamine and muscarinic cholinergic, but not γ-aminobutyric acid receptors. D1-like and D2-like dopamine receptor binding was drastically reduced to one-third of control in the brains of 8- and 12-week-old R6/2 mice. In situ hybridization indicated that mGluR and D1 dopamine receptor mRNA were altered as early as 4 weeks of age, long prior to the onset of clinical symptoms. Thus, altered expression of neurotransmitter receptors precedes clinical symptoms in R6/2 mice and may contribute to subsequent pathology.
Resumo:
The inheritance of much early-onset Alzheimer disease (AD) has been linked to a dominant-acting locus on chromosome 14. Recently, the gene likely responsible for this genetic linkage has been identified and termed AD3. Five mutations have been found in AD3 that segregate with the disease phenotype in seven AD families and are not present in unaffected individuals. Here we report the existence of a gene encoding a seven transmembrane domain protein very similar to that encoded by AD3 in structure and sequence. This gene is located on chromosome 1, is expressed in a variety of tissues, including brain, and is predicted to harbor mutations causing nonchromosome 14 familial AD. The presence of several S/TPXX DNA binding motifs in both the AD3 protein and the AD3-like protein /AD4 protein suggests a possible role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. Ways in which mutations in either gene could lead to AD are discussed.
Resumo:
The Wiskott-Aldrich syndrome (WAS) is an X-chromosome-linked recessive disease characterized by eczema, thrombocytopenia, and immunodeficiency. The disease gene has been localized to the proximal short arm of the X chromosome and recently isolated through positional cloning. The function of the encoded protein remains undetermined. In this study we have characterized mutations in 12 unrelated patients to confirm the identity of the disease gene. We have also revised the coding sequence and genomic structure for the WAS gene. To analyze further the transmittance of the disease gene, we have characterized a polymorphic microsatellite at the DXS6940 locus within 30 kb of the gene and demonstrate the inheritance of the affected alleles in families with a history of WAS.
Resumo:
The CCC2 gene of the yeast Saccharomyces cerevisiae is homologous to the human genes defective in Wilson disease and Menkes disease. A biochemical hallmark of these diseases is a deficiency of copper in ceruloplasmin and other copper proteins found in extracytosolic compartments. Here we demonstrate that disruption of the yeast CCC2 gene results in defects in respiration and iron uptake. These defects could be reversed by supplementing cells with copper, suggesting that CCC2 mutant cells were copper deficient. However, cytosolic copper levels and copper uptake were normal. Instead, CCC2 mutant cells lacked a copper-dependent oxidase activity associated with the extracytosolic domain of the FET3-encoded protein, a ceruloplasmin homologue previously shown to be necessary for high-affinity iron uptake in yeast. Copper restored oxidase activity both in vitro and in vivo, paralleling the ability of copper to restore respiration and iron uptake. These results suggest that the CCC2-encoded protein is required for the export of copper from the cytosol into an extracytosolic compartment, supporting the proposal that intracellular copper transport is impaired in Wilson disease and Menkes disease.
Resumo:
Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.
Resumo:
Conditional gene repair mutations in the mouse can assist in cell lineage analyses and provide a valuable complement to conditional gene inactivation strategies. We present a method for the generation of conditional gene repair mutations that employs a loxP-flanked (floxed) selectable marker and transcriptional/translational stop cassette (neostop) located within the first intron of a target gene. In the absence of Cre recombinase, expression of the targeted allele is suppressed generating a null allele, while in the presence of Cre, excision of neostop restores expression to wild-type levels. To test this strategy, we have generated a conditional gene repair allele of the mouse Huntington’s disease gene homolog (Hdh). Insertion of neostop within the Hdh intron 1 generated a null allele and mice homozygous for this allele resembled nullizygous Hdh mutants and died after embryonic day 8.5. In the presence of a cre transgene expressed ubiquitously early in development, excision of neostop restored Hdh expression and rescued the early embryonic lethality. A simple modification of this strategy that permits the generation of conventional gene knockout, conditional gene knockout and conditional gene repair alleles using one targeting construct is discussed.
Resumo:
What do epilepsy, migraine headache, deafness, episodic ataxia, periodic paralysis, malignant hyperthermia, and generalized myotonia have in common? These human neurological disorders can be caused by mutations in genes for ion channels. Many of the channel diseases are “paroxysmal disorders” whose principal symptoms occur intermittently in individuals who otherwise may be healthy and active. Some of the ion channels that cause human neurological disease are old acquaintances previously cloned and extensively studied by channel specialists. In other cases, however, disease-gene hunts have led the way to the identification of new channel genes. Progress in the study of ion channels has made it possible to analyze the effects of human neurological disease-causing channel mutations at the level of the single channel, the subcellular domain, the neuronal network, and the behaving organism.
Resumo:
On the causal hypothesis, most genetic determinants of disease are single-nucleotide polymorphisms (SNPs) that are likely to be selected as markers for positional cloning. On the proximity hypothesis, most disease determinants will not be included among markers but may be detected through linkage disequilibrium with other SNPs. In that event, allelic association among SNPs is an essential factor in positional cloning. Recent simulation based on monotonic population expansion suggests that useful association does not usually extend beyond 3 kb. This is contradicted by significant disequilibrium at much greater distances, with corresponding reduction in the number of SNPs required for a cost-effective genome scan. A plausible explanation is that cyclical expansions follow population bottlenecks that establish new disequilibria. Data on more than 1,000 locus pairs indicate that most disequilibria trace to the Neolithic, with no apparent difference between haplotypes that are random or selected through a major disease gene. Short duration may be characteristic of alleles contributing to disease susceptibility and haplotypes characteristic of particular ethnic groups. Alleles that are highly polymorphic in all ethnic groups may be older, neutral, or advantageous, in weak disequilibrium with nearby markers, and therefore less useful for positional cloning of disease genes. Significant disequilibrium at large distance makes the number of suitably chosen SNPs required for genome screening as small as 30,000, or 1 per 100 kb, with greater density (including less common SNPs) reserved for candidate regions.
Resumo:
The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae.
Resumo:
Little is known about the potential for engraftment of autologous hematopoietic stem cells in human adults not subjected to myeloablative conditioning regimens. Five adult patients with the p47phox deficiency form of chronic granulomatous disease received intravenous infusions of autologous CD34+ peripheral blood stem cells (PBSCs) that had been transduced ex vivo with a recombinant retrovirus encoding normal p47phox. Although marrow conditioning was not given, functionally corrected granulocytes were detectable in peripheral blood of all five patients. Peak correction occurred 3–6 weeks after infusion and ranged from 0.004 to 0.05% of total peripheral blood granulocytes. Corrected cells were detectable for as long as 6 months after infusion in some individuals. Thus, prolonged engraftment of autologous PBSCs and continued expression of the transduced gene can occur in adults without conditioning. This trial also piloted the use of animal protein-free medium and a blood-bank-compatible closed system of gas-permeable plastic containers for culture and transduction of the PBSCs. These features enhance the safety of PBSCs directed gene therapy.
Resumo:
The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.
Resumo:
We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat2J, that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat2J mutation to a genetic distance of 0.28 ± 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat2J mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat2J/kat2J mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.
Resumo:
Reduced penetrance in genetic disorders may be either dependent or independent of the genetic background of gene carriers. Hirschsprung disease (HSCR) demonstrates a complex pattern of inheritance with ≈50% of familial cases being heterozygous for mutations in the receptor tyrosine kinase RET. Even when identified, the penetrance of RET mutations is only 50–70%, gender-dependent, and varies with the extent of aganglionosis. We searched for additional susceptibility genes which, in conjunction with RET, lead to phenotypic expression by studying 12 multiplex HSCR families. Haplotype analysis and extensive mutation screening demonstrated three types of families: six families harboring severe RET mutations (group I); and the six remaining families, five of which are RET-linked families with no sequence alterations and one RET-unlinked family (group II). Although the presence of RET mutations in group I families is sufficient to explain HSCR inheritance, a genome scan reveals a new susceptibility locus on 9q31 exclusively in group II families. As such, the gene at 9q31 is a modifier of HSCR penetrance. These observations imply that identification of new susceptibility factors in a complex disease may depend on classification of families by mutational type at known susceptibility genes.
Resumo:
For many inborn errors of metabolism, early treatment is critical to prevent long-term developmental sequelae. We have used a gene-therapy approach to demonstrate this concept in a murine model of mucopolysaccharidosis type VII (MPS VII). Newborn MPS VII mice received a single intravenous injection with 5.4 × 106 infectious units of recombinant adeno-associated virus encoding the human β-glucuronidase (GUSB) cDNA. Therapeutic levels of GUSB expression were achieved by 1 week of age in liver, heart, lung, spleen, kidney, brain, and retina. GUSB expression persisted in most organs for the 16-week duration of the study at levels sufficient to either reduce or prevent completely lysosomal storage. Of particular significance, neurons, microglia, and meninges of the central nervous system were virtually cleared of disease. In addition, neonatal treatment of MPS VII mice provided access to the central nervous system via an intravenous route, avoiding a more invasive procedure later in life. These data suggest that gene transfer mediated by adeno-associated virus can achieve therapeutically relevant levels of enzyme very early in life and that the rapid growth and differentiation of tissues does not limit long-term expression.