9 resultados para DIFFUSE SCATTERING

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to be essential for signal transduction. We show here that a MET receptor mutated on the four C-terminal tyrosine residues, Y1311F, Y1347F, Y1354F, and Y1363F, can induce efficiently a transcriptional response and cell scattering, whereas it cannot induce cell morphogenesis. Although the mutated receptor had lost its ability to recruit and/or activate known signaling molecules, such as GRB2, SHC, GAB1, and PI3K, by using a sensitive association–kinase assay we found that the mutated receptor can still associate and phosphorylate a ∼250-kDa protein. By further examining signal transduction mediated by the mutated MET receptor, we established that it can transmit efficient RAS signaling and that cell scattering by the mutated MET receptor could be inhibited by a pharmacological inhibitor of the MEK-ERK (MAP kinase kinase–extracellular signal-regulated kinase) pathway. We propose that signal transduction by autophosphorylation of the C-terminal tyrosine residues is not the sole mechanism by which the activated MET receptor can transmit RAS signaling and cell scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An initial stage of fibrillogenesis in solutions of glutathione S-transferase-huntingtin (GST-HD) fusion proteins has been studied by using dynamic light scattering. Two GST-HD systems with poly-l-glutamine (polyGln) extensions of different lengths (20 and 51 residues) have been examined. For both systems, kinetics of z-average translation diffusion coefficients (Dapp) and their angular dependence have been obtained. Our data reveal that aggregation does occur in both GST-HD51 and GST-HD20 solutions, but that it is much more pronounced in the former. Thus, our approach provides a powerful tool for the quantitative assay of GST-HD fibrillogenesis in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B cell diffuse large cell lymphoma (B-DLCL) is a heterogeneous group of tumors, based on significant variations in morphology, clinical presentation, and response to treatment. Gene expression profiling has revealed two distinct tumor subtypes of B-DLCL: germinal center B cell-like DLCL and activated B cell-like DLCL. In a separate study, we determined that B-DLCL can also be subdivided into two groups based on the presence or absence of ongoing Ig gene hypermutation. Here, we evaluated the correlation between these B-DLCL subtypes established by the two different methods. Fourteen primary B-DLCL cases were studied by gene expression profiling using DNA microarrays and for the presence of ongoing mutations in their Ig heavy chain gene. All seven cases classified as germinal center B cell-like DLCL by gene expression showed the presence of ongoing mutations in the Ig genes. Five of the seven cases classified by gene expression as activated B cell-like DLCL had no ongoing somatic mutations, whereas, in the remaining two cases, a single point mutation was observed in only 2 of 15 and 21 examined molecular clones of variable heavy (VH) chain gene, respectively. These two cases were distantly related to the rest of the activated B cell-like DLCL tumors by gene expression. Our findings validate the concept that lymphoid malignancies are derived from cells at discrete stages of normal lymphocyte maturation and that the malignant cells retain the genetic program of those normal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared diffuse optical spectroscopy and diffuse optical imaging are promising methods that eventually may enhance or replace existing technologies for breast cancer screening and diagnosis. These techniques are based on highly sensitive, quantitative measurements of optical and functional contrast between healthy and diseased tissue. In this study, we examine whether changes in breast physiology caused by exogenous hormones, aging, and fluctuations during the menstrual cycle result in significant alterations in breast tissue optical contrast. A noninvasive quantitative diffuse optical spectroscopy technique, frequency-domain photon migration, was used. Measurements were performed on 14 volunteer subjects by using a hand-held probe. Intrinsic tissue absorption and reduced scattering parameters were calculated from frequency-domain photon migration data. Wavelength-dependent absorption (at 674, 803, 849, and 956 nm) was used to determine tissue concentration of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, tissue hemoglobin oxygen saturation, and bulk water content. Results show significant and dramatic differences in optical properties between menopausal states. Average premenopausal intrinsic tissue absorption and reduced scattering values at each wavelength are 2.5- to 3-fold higher and 16–28% greater, respectively, than absorption and scattering for postmenopausal subjects. Absorption and scattering properties for women using hormone replacement therapy are intermediate between premenopausal and postmenopausal populations. Physiological properties show differences in mean total hemoglobin (7.0 μM, 11.8 μM, and 19.2 μM) and water concentration relative to pure water (10.9%, 15.3%, and 27.3%) for postmenopausal, hormone replacement therapy, and premenopausal subjects, respectively. Because of their unique, quantitative information content, diffuse optical methods may play an important role in breast diagnostics and improving our understanding of breast disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylem cavitation in winter and recovery from cavitation in the spring were visualized in two species of diffuse-porous trees, Betula platyphylla var. japonica Hara and Salix sachalinensis Fr. Schm., by cryo-scanning electron microscopy after freeze-fixation of living twigs. Water in the vessel lumina of the outer three annual rings of twigs of B. platyphylla var. japonica and of S. sachalinensis gradually disappeared during the period from January to March, an indication that cavitation occurs gradually in these species during the winter. In April, when no leaves had yet expanded, the lumina of most of the vessels of both species were filled with water. Many vessel lumina in twigs of both species were filled with water during the period from the subsequent growth season to the beginning of the next winter. These observations indicate that recovery in spring occurs before the onset of transpiration and that water transport through twigs occurs during the subsequent growing season. We found, moreover, that vessels repeat an annual cycle of winter cavitation and spring recovery from cavitation for several years until irreversible cavitation occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasielastic incoherent neutron scattering from hydrogen atoms, which are distributed nearly homogeneously in biological molecules, allows the investigation of diffusive motions occurring on the pico- to nanosecond time scale. A quasielastic incoherent neutron scattering study was performed on the integral membrane protein bacteriorhodopsin (BR), which is a light-driven proton pump in Halobacterium salinarium. BR is embedded in lipids, forming patches in the cell membrane of the organism, which are the so called purple membranes (PMs). Measurements were carried out at room temperature on oriented PM-stacks hydrated at two different levels (low hydration, h = 0.03 g of D2O per g of PM; high hydration, h = 0.28 g of D2O per g of PM) using time-of-flight spectrometers. From the measured spectra, different diffusive components were identified and analyzed with respect to the influence of hydration. This study supports the idea that a decrease in hydration results in an appreciable decrease in internal molecular flexibility of the protein structure. Because it is known from studies on the function of BR that the pump activity is reduced if the hydration level of the protein is insufficient, we conclude that the observed diffusive motions are essential for the function of this protein. A detailed analysis and classification of the different kinds of diffusive motions, predominantly occurring in PMs under physiological conditions, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of the human PAX-5 locus and of the 5' region of the mouse Pax-5 gene revealed that transcription from two distinct promoters results in splicing of two alternative 5' exons to the common coding sequences of exons 2-10. Transcription from the upstream promoter initiates downstream of a TATA box and occurs predominantly in B-lymphocytes, whereas the TATA-less downstream promoter is active in all Pax-5-expressing tissues. The human PAX-5 gene is located on chromosome 9 in region p13, which is involved in t(9;14)(pl3;q32) translocations recurring in small lymphocytic lymphomas of the plasmacytoid subtype and in derived large-cell lymphomas. A previous molecular analysis of a t(9;14) breakpoint from a diffuse large-cell lymphoma (KIS-1) demonstrated that the immunoglobulin heavy-chain (IgH) locus on 14q32 was juxtaposed to chromosome 9p13 sequences of unknown function [Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T. & Honjo, T. (1990) Proc. Natl. Acad. Sci. USA 87,628-632]. Here we show that the KIS-1 translocation breakpoint is located 1807 base pairs upstream of exon 1A of PAX-5, thus bringing the potent Emu enhancer of the IgH gene into close proximity of the PAX-5 promoters. These data suggest that deregulation of PAX-5 gene transcription by the t(9;14)(pl3;q32) translocation contributes to the pathogenesis of small lymphocytic lymphomas with plasmacytoid differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations in low-frequency atomic displacements predicted by molecular dynamics simulations on the order of 1 ns are undersampled for the time scales currently accessible by the technique. This is shown with three different representations of the fluctuations in a macromolecule: the reciprocal space of crystallography using diffuse x-ray scattering data, real three-dimensional Cartesian space using covariance matrices of the atomic displacements, and the 3N-dimensional configuration space of the protein using dimensionally reduced projections to visualize the extent to which phase space is sampled.