7 resultados para DIFFERENT LIGHT-SOURCES

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of copper on photoinhibition of photosystem II in vivo was studied in bean (Phaseolus vulgaris L. cv Dufrix). The plants were grown hydroponically in the presence of various concentrations of Cu2+ ranging from the optimum 0.3 μm (control) to 15 μm. The copper concentration of leaves varied according to the nutrient medium from a control value of 13 mg kg−1 dry weight to 76 mg kg−1 dry weight. Leaf samples were illuminated in the presence and absence of lincomycin at different light intensities (500–1500 μmol photons m−2 s−1). Lincomycin prevents the concurrent repair of photoinhibitory damage by blocking chloroplast protein synthesis. The photoinhibitory decrease in the light-saturated rate of O2 evolution measured from thylakoids isolated from treated leaves correlated well with the decrease in the ratio of variable to maximum fluorescence measured from the leaf discs; therefore, the fluorescence ratio was used as a routine measurement of photoinhibition in vivo. Excess copper was found to affect the equilibrium between photoinhibition and repair, resulting in a decrease in the steady-state concentration of active photosystem II centers of illuminated leaves. This shift in equilibrium apparently resulted from an increase in the quantum yield of photoinhibition (ΦPI) induced by excess copper. The kinetic pattern of photoinhibition and the independence of ΦPI on photon flux density were not affected by excess copper. An increase in ΦPI may contribute substantially to Cu2+ toxicity in certain plant species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present evidence that a novel phytochrome (other than phytochromes A and B, PHYA and PHYB) operative in green plants regulates the "twilight-inducible" expression of a plant homeobox gene (Athb-2). Light regulation of the Athb-2 gene is unique in that it is not induced by red (R)-rich daylight or by the light-dark transition but is instead induced by changes in the ratio of R to far-red (FR) light. These changes, which normally occur at dawn and dusk (end-of-day FR), also occur during the daytime under the canopy (shade avoidance). By using pure light sources and phyA/phyB null mutants, we demonstrated that the induction of Athb-2 by changes in the R/FR ratio is mediated for the most part by a novel phytochrome operative in green plants. Furthermore, PHYB plays a negative role in repressing the accumulation of Athb-2 mRNA in the dark and a minor role in the FR response. The strict correlation of Athb-2 expression with FR-induced growth phenomena suggests a role for the Athb-2 gene in mediating cell elongation. This interpretation is supported by the finding that the Athb-2 gene is expressed at high levels in rapidly elongating etiolated seedlings. Furthermore, as either R or FR light inhibits cell elongation in etiolated tissues, they also down-regulate the expression of Athb-2 mRNA. Thus, these data support the notion that changes in light quality perceived by a novel phytochrome regulate plant development through the action of the Athb-2 homeobox gene.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Quercus ilex L. leaves emit terpenes but do not have specialized structures for terpene storage. We exploited this unique feature to investigate terpene biosynthesis in intact leaves of Q. ilex. Light induction allowed us to distinguish three classes of terpenes: (i) a rapidly induced class including alpha-pinene; (ii) a more slowly induced class, including cis-beta-ocimene; and (iii) the most slowly induced class, including 3-methyl-3-buten-1-ol. Using 13C, we found that alpha-pinene and cis-beta-ocimene were labeled quickly and almost completely while there was a delay before label appeared in linalool and 3-methyl-3-buten-1-ol. The acetyl group of 3-methyl-3-buten-1-yl acetate was labeled quickly but label was limited to 20% of the moiety. It is suggested that the ocimene class of monoterpenes is made from one or more terpenes of the alpha-pinene class and that both classes are made entirely from reduced carbon pools inside the chloroplasts. Linalool and 3-methyl-3-buten-1-ol are made from a different pool of reduced carbon, possibly in nonphotosynthetic plastids. The acetyl group of the 3-methyl-3-buten-1-yl acetate is derived mostly from carbon that does not participate in photosynthetic reactions. Low humidity and prolonged exposure to light favored ocimenes emission and induced linalool emission. This may indicate conversion between terpene classes.