4 resultados para DIALKYL DISULFIDES
em National Center for Biotechnology Information - NCBI
Resumo:
Two factors that contribute to the progression of Parkinson disease are a brain defect in mitochondrial respiration and the generation of hydrogen peroxide (H2O2) by monoamine oxidase (MAO). Here we show that the two are linked. Metabolism of the neurotransmitter dopamine, or other monoamines (benzylamine, tyramine), by intact rat brain mitochondria suppresses pyruvate- and succinate-dependent electron transport. MAO inhibitors prevent this action. Mitochondrial damage is also reversed during electron flow. A probable explanation is that MAO-generated H2O2 oxidizes glutathione to glutathione disulfide (GSSG), which undergoes thiol-disulfide interchange to form protein mixed disulfides, thereby interfering reversibly with thiol-dependent enzymatic function. In agreement with this premise, direct addition of GSSG to mitochondria resulted in similar reversible inhibition of electron transport. In addition, the monoamines induced an elevation in protein mixed disulfides within mitochondria. These observations imply that (i) heightened activity and metabolism of neurotransmitter by monoamine neurons may affect neuronal function, and (ii) apparent defects in mitochondrial respiration associated with Parkinson disease may reflect, in part, an established increase in dopamine turnover. The experimental results also target mitochondrial repair mechanisms for further investigation and may, in time, lead to newer forms of therapy.
Resumo:
Glutaredoxins are small heat-stable proteins that act as glutathione-dependent disulfide oxidoreductases. Two genes, designated GRX1 and GRX2, which share 40–52% identity and 61–76% similarity with glutaredoxins from bacterial and mammalian species, were identified in the yeast Saccharomyces cerevisiae. Strains deleted for both GRX1 and GRX2 were viable but lacked heat-stable oxidoreductase activity using β-hydroxyethylene disulfide as a substrate. Surprisingly, despite the high degree of homology between Grx1 and Grx2 (64% identity), the grx1 mutant was unaffected in oxidoreductase activity, whereas the grx2 mutant displayed only 20% of the wild-type activity, indicating that Grx2 accounted for the majority of this activity in vivo. Expression analysis indicated that this difference in activity did not arise as a result of differential expression of GRX1 and GRX2. In addition, a grx1 mutant was sensitive to oxidative stress induced by the superoxide anion, whereas a strain that lacked GRX2 was sensitive to hydrogen peroxide. Sensitivity to oxidative stress was not attributable to altered glutathione metabolism or cellular redox state, which did not vary between these strains. The expression of both genes was similarly elevated under various stress conditions, including oxidative, osmotic, heat, and stationary phase growth. Thus, Grx1 and Grx2 function differently in the cell, and we suggest that glutaredoxins may act as one of the primary defenses against mixed disulfides formed following oxidative damage to proteins.
Resumo:
The integrin αLβ2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the αM and α2 subunits has been crystallized in both open and closed conformations; however, the αL I domain has been crystallized in only the closed conformation. We hypothesized that the αL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the αL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg2+. Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The kon, koff, and KD values for the locked open I domain were within 1.5-fold of values previously determined for the αLβ2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized αLβ2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.
Resumo:
Transmembrane signaling by bacterial chemoreceptors is thought to involve relative movement among the four transmembrane helices of the homodimer. We assayed that movement by measuring effects of ligand occupancy on rates of oxidative cross-linking between cysteines introduced into neighboring helices of the transmembrane domain of chemoreceptor Trg from Escherichia coli. Measurements were done on chemoreceptors in their native environment, intact cells that were motile and chemotactically responsive. Receptor occupancy did not appear to cause drastic rearrangement of the four-helix structure since, among 67 cysteine pairs tested, the same 19 exhibited oxidative cross-linking in the presence or absence of saturating chemoattractant. However, occupancy did cause subtle changes that were detected as effects on rates of cross-linking. Among the seven disulfides appropriate for measurements of initial rates of formation, ligand occupancy had significant and different effects on all three cross-links that connected the two helices within a subunit but had minimal effects on the four that spanned the packing interface between subunits. This constitutes direct evidence that the conformational change of transmembrane signaling involves significant movement within a subunit and minimal movement between subunits, a pattern deduced from several previous studies and now documented directly. Among possible modes of movement between the two helices of a subunit, axial sliding of one helix relative to the other was the conformational change that best accounted for the observed effects on cross-linking.