5 resultados para DIABETES PREVENTION PROGRAM
em National Center for Biotechnology Information - NCBI
Resumo:
The adenovirus (Ad) genome contains immunoregulatory and cytokine inhibitory genes that are presumed to function in facilitating acute infection or in establishing persistence in vivo. Some of these genes are clustered in early region 3 (E3), which contains a 19-kDa glycoprotein (gp19) that inhibits the transport of selected class I major histocompatibility complex (MHC) molecules out of the endoplasmic reticulum. In addition, the E3 region contains three protein inhibitors of the cytolytic function of tumor necrosis factor α (TNF-α). Because type I autoimmune diabetes destroys islets by mechanisms that involve class I MHC and TNF-α, we investigated whether the entire cassette of Ad E3 genes might prevent the onset of diabetes in a well studied lymphocytic choriomeningitis viral (LCMV) murine model of virus-induced autoimmune diabetes. In this model, a LCMV polypeptide (either glycoprotein or nucleoprotein) expressed as a transgene in the islets is a target for autoimmune destruction of β cells after LCMV infection. In this scenario the LCMV-induced immune response is directed not only against the virus but also against the LCMV transgenes expressed in the β cells. Our experiments demonstrated a very efficient prevention of this LCMV-triggered diabetes by the Ad E3 genes. This resulted from the inhibition of target cell recognition by a fully competent and LCMV-primed immune system. Unlike the results from the β-2 microglobulin gene deletion experiments, our approach shows that selective regulation at the level of the target cell is sufficient to prevent autoimmune diabetes without disrupting the function of the systemic immune response. Although the Ad genes in these experiments were provided as transgenes, recent experiments may permit the introduction of such genes through the use of viral vectors. Although the decrease in class I MHC in islets by Ad genes was demonstrated in these in vivo studies, the relative importance of this process and the control of TNF-α cytolysis must await further genetic dissection of the introduced Ad genes.
Resumo:
With the development of an insulin autoantibody (IAA) assay performed in 96-well filtration plates, we have evaluated prospectively the development of IAA in NOD mice (from 4 weeks of age) and children (from 7 to 10 months of age) at genetic risk for the development of type 1 diabetes. NOD mice had heterogeneous expression of IAA despite being inbred. IAA reached a peak between 8 and 16 weeks and then declined. IAA expression by NOD mice at 8 weeks of age was strongly associated with early development of diabetes, which occurred at 16–18 weeks of age (NOD mice IAA+ at 8 weeks: 83% (5/6) diabetic by 18 weeks versus 11% (1/9) of IAA negative at 8 weeks; P < .01). In man, IAA was frequently present as early as 9 months of age, the first sampling time. Of five children found to have persistent IAA before 1 year of age, four have progressed to diabetes (all before 3.5 years of age) and the fifth is currently less than age 2. Of the 929 children not expressing persistent IAA before age 1, only one has progressed to diabetes to date (age onset 3), and this child expressed IAA at his second visit (age 1.1). In new onset patients, the highest levels of IAA correlated with an earlier age of diabetes onset. Our data suggest that the program for developing diabetes of NOD mice and humans is relatively “fixed” early in life and, for NOD mice, a high risk of early development of diabetes is often determined by 8 weeks of age. With such early determination of high risk of progression to diabetes, immunologic therapies in humans may need to be tested in children before the development of IAA for maximal efficacy.
Resumo:
The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity.
Resumo:
Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.
Resumo:
High-fat intake leading to obesity contributes to the development of non-insulin-dependent diabetes mellitus (NIDDM, type 2). Similarly, mice fed a high-fat (safflower oil) diet develop defective glycemic control, hyperglycemia, and obesity. To assess the effect of a modest increase in the expression of GLUT4 (the insulin-responsive glucose transporter) on impaired glycemic control caused by fat feeding, transgenic mice harboring a GLUT4 minigene were fed a high-fat diet. Low-level tissue-specific (heart, skeletal muscle, and adipose tissue) expression of the GLUT4 minigene in transgenic mice prevented the impairment of glycemic control and accompanying hyperglycemia, but not obesity, caused by fat feeding. Thus, a small increase (< or = 2-fold) in the tissue level of GLUT4 prevents a primary symptom of the diabetic state in a mouse model, suggesting a possible target for intervention in the treatment of NIDDM.