3 resultados para DETECTION LIMIT
em National Center for Biotechnology Information - NCBI
Resumo:
We developed a real-time detection (RTD) polymerase chain reaction (PCR) with rapid thermal cycling to detect and quantify Pseudomonas aeruginosa in wound biopsy samples. This method produced a linear quantitative detection range of 7 logs, with a lower detection limit of 103 colony-forming units (CFU)/g tissue or a few copies per reaction. The time from sample collection to result was less than 1h. RTD-PCR has potential for rapid quantitative detection of pathogens in critical care patients, enabling early and individualized treatment.
Resumo:
The isolation of thionein (T) from tissues has not been reported heretofore. T contains 20 cysteinyl residues that react with 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide to form fluorescent adducts. In metallothionein (MT) the cysteinyl residues, which are bound to zinc, do not react. However, they do react in the presence of a chelating agent such as EDTA. The resultant difference in chemical reactivity provides a means to measure T in the absence of EDTA, (MT + T) in its presence, and, of course, MT by difference. The 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide derivative of T can be isolated from tissue homogenates by HPLC and quantified fluorimetrically with a detection limit in the femtomolar range and a linear response over 3 orders of magnitude. Analysis of liver, kidney, and brain of rats reveals almost as much T as MT. Moreover, in contrast to earlier views, MT in tissue extracts appears to be less stable than T. The existence of T in tissues under normal physiological conditions has important implications for its function both in zinc metabolism and the redox balance of the cell.
Resumo:
A Cd2+-selective vibrating microelectrode was constructed using a neutral carrier-based Cd ionophore to investigate ion-transport processes along the roots of wheat (Triticum aestivum L.) and two species of Thlaspi, one a Zn/Cd hyperaccumulator and the other a related nonaccumulator. In simple Cd(NO3)2 solutions, the electrode exhibited a Nernstian response in solutions with Cd2+ activities as low as 50 nm. Addition of Ca2+ to the calibration solutions did not influence the slope of the calibration curve but reduced the detection limit to a solution activity of 1 μm Cd2+. Addition of high concentrations of K+ and Mg2+ to the calibration solution to mimic the ionic composition of the cytoplasm affected neither the slope nor the sensitivity of the electrode, demonstrating the pH-insensitive electrode's potential for intracellular investigations. The electrode was assayed for selectivity and was shown to be at least 1000 times more selective for Cd2+ than for any of those potentially interfering ions tested. Flux measurements along the roots of the two Thlaspi species showed no differences in the pattern or the magnitude of Cd2+ uptake within the time frame considered. The Cd2+-selective microelectrode will permit detailed investigations of heavy-metal ion transport in plant roots, especially in the area of phytoremediation.