3 resultados para DC current injection

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

After periods of high-frequency firing, the normal rhythmically active serotonin (5HT)-containing neurosecretory neurons of the lobster ventral nerve cord display a period of suppressed spike generation and reduced synaptic input that we refer to as “autoinhibition.” The duration of this autoinhibition is directly related to the magnitude and duration of the current injection triggering the high-frequency firing. More interesting, however, is that the autoinhibition is inversely related to the initial firing frequency of these cells within their normal range of firing (0.5–3 Hz). This allows more active 5HT neurons to resume firing after shorter durations of inhibition than cells that initially fired at slower rates. Although superfused 5HT inhibits the spontaneous firing of these cells, the persistence of autoinhibition in saline with no added calcium, in cadmium-containing saline, and in lobsters depleted of serotonin suggests that intrinsic membrane properties account for the autoinhibition. A similar autoinhibition is seen in spontaneously active octopamine neurons but is absent from spontaneously active γ-aminobutyric acid cells. Thus, this might be a characteristic feature of amine-containing neurosecretory neurons. The 5HT cells of vertebrate brain nuclei share similarities in firing frequencies, spike shapes, and inhibition by 5HT with the lobster cells that were the focus of this study. However, the mechanism suggested to underlie autoinhibition in vertebrate neurons is that 5HT released from activated or neighboring cells acts back on inhibitory autoreceptors that are found on the dendrites and cell bodies of these neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythropoietin (Epo)-responsive anemia is a common and debilitating complication of chronic renal failure and human immunodeficiency virus infection. Current therapy for this condition involves repeated intravenous or subcutaneous injections of recombinant Epo. In this report, we describe the development of a novel muscle-based gene transfer approach that produces long-term expression of physiologically significant levels of Epo in the systemic circulation of mice. We have constructed a plasmid expression vector, pVRmEpo, that contains the murine Epo cDNA under the transcriptional control of the cytomegalovirus immediate early (CMV-IE) promoter, the CMV-IE 5' untranslated region, and intron A. A single intramuscular (i.m.) injection of as little as 10 micrograms of this plasmid into immunocompetent adult mice produced physiologically significant elevations in serum Epo levels and increased hematocrits from preinjection levels of 48 +/- 0.4% to levels of 64 +/- 3.3% 45 days after injection. Hematocrits in these animals remained elevated at greater than 60% for at least 90 days after a single i.m. injection of 10 micrograms of pVRmEpo. We observed a dose-response relationship between the amount of plasmid DNA injected and subsequent elevations in hematocrits. Mice injected once with 300 micrograms of pVRmEpo displayed 5-fold increased serum Epo levels and elevated hematocrits of 79 +/- 3.3% at 45 days after injection. The i.m. injected plasmid DNA remained localized to the site of injection as assayed by the PCR. We conclude that i.m. injection of plasmid DNA represents a viable nonviral gene transfer method for the treatment of acquired and inherited serum protein deficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Squid synaptotagmin (Syt) cDNA, including its open reading frame, was cloned and polyclonal antibodies were obtained in rabbits immunized with glutathione S-transferase (GST)-Syt-C2A. Binding assays indicated that the antibody, anti-Syt-C2A, recognized squid Syt and inhibited the Ca(2+)-dependent phospholipid binding to the C2A domain. This antibody, when injected into the preterminal at the squid giant synapse, blocked transmitter release in a manner similar to that previously reported for the presynaptic injection of members of the inositol high-polyphosphate series. The block was not accompanied by any change in the presynaptic action potential or the amplitude or voltage dependence of the presynaptic Ca2+ current. The postsynaptic potential was rather insensitive to repetitive presynaptic stimulation, indicating a direct effect of the antibody on the transmitter release system. Following block of transmitter release, confocal microscopical analysis of the preterminal junction injected with rhodamine-conjugated anti-Syt-C2A demonstrated fluorescent spots at the inner surface of the presynaptic plasmalemma next to the active zones. Structural analysis of the same preparations demonstrated an accumulation of synaptic vesicles corresponding in size and distribution to the fluorescent spots demonstrated confocally. Together with the finding that such antibody prevents Ca2+ binding to a specific receptor in the C2A domain, these results indicate that Ca2+ triggers transmitter release by activating the C2A domain of Syt. We conclude that the C2A domain is directly related to the fusion of synaptic vesicles that results in transmitter release.