37 resultados para D1 DOPAMINE RECEPTOR

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of dopamine D1 receptors has profound effects on addictive behavior, movement control, and working memory. Many of these functions depend on dopaminergic systems in the striatum and D1–D2 dopamine receptor synergies have been implicated as well. We show here that deletion of the D1 dopamine receptor produces a neural phenotype in which amphetamine and cocaine, two addictive psychomotor stimulants, can no longer stimulate neurons in the striatum to express cFos or JunB or to regulate dynorphin. By contrast, haloperidol, a typical neuroleptic that acts preferentially at D2-class receptors, remains effective in inducing catalepsy and striatal Fos/Jun expression in the D1 mutants, and these behavioral and neural effects can be blocked by D2 dopamine receptor agonists. These findings demonstrate that D2 dopamine receptors can function without the enabling role of D1 receptors but that D1 dopamine receptors are essential for the control of gene expression and motor behavior by psychomotor stimulants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine D1, dopamine D2, and adenosine A2A receptors are highly expressed in striatal medium-sized spiny neurons. We have examined, in vivo, the influence of these receptors on the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). DARPP-32 is a potent endogenous inhibitor of protein phosphatase-1, which plays an obligatory role in dopaminergic transmission. A dose-dependent increase in the state of phosphorylation of DARPP-32 occurred in mouse striatum after systemic administration of the D2 receptor antagonist eticlopride (0.1–2.0 mg/kg). This effect was abolished in mice in which the gene coding for the adenosine A2A receptor was disrupted by homologous recombination. A reduction was also observed in mice that had been pretreated with the selective A2A receptor antagonist SCH 58261 (10 mg/kg). The eticlopride-induced increase in DARPP-32 phosphorylation was also decreased by pretreatment with the D1 receptor antagonist SCH 23390 (0.125 and 0.25 mg/kg) and completely reversed by combined pretreatment with SCH 23390 (0.25 mg/kg) plus SCH 58261 (10 mg/kg). SCH 23390, but not SCH 58261, abolished the increase in DARPP-32 caused by cocaine (15 mg/kg). The results indicate that, in vivo, the state of phosphorylation of DARPP-32 and, by implication, the activity of protein phosphatase-1 are regulated by tonic activation of D1, D2, and A2A receptors. The results also underscore the fact that the adenosine system plays a role in the generation of responses to dopamine D2 antagonists in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The γ-aminobutyric acid type A (GABAA) receptor is the predominant Cl− channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While most effects of dopamine in the brain are mediated by the D1 and D2 receptor subtypes, other members of this G protein-coupled receptor family have potentially important functions. D3 receptors belong to the D2-like subclass of dopamine receptors, activation of which inhibits adenylyl cyclase. Using targeted mutagenesis in mouse embryonic stem cells, we have generated mice lacking functional D3 receptors. A premature chain-termination mutation was introduced in the D3 receptor gene after residue Arg-148 in the second intracellular loop of the predicted protein sequence. Binding of the dopamine antagonist [125I]iodosulpride to D3 receptors was absent in mice homozygous for the mutation and greatly reduced in heterozygous mice. Behavioral analysis of mutant mice showed that this mutation is associated with hyperactivity in an exploratory test. Homozygous mice lacking D3 receptors display increased locomotor activity and rearing behavior. Mice heterozygous for the D3 receptor mutation show similar, albeit less pronounced, behavioral alterations. Our findings indicate that D3 receptors play an inhibitory role in the control of certain behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agonists of the dopamine D1/D5 receptors that are positively coupled to adenylyl cyclase specifically induce a slowly developing long-lasting potentiation of the field excitatory postsynaptic potential in the CA1 region of the hippocampus that lasts for > 6 hr. This potentiation is blocked by the specific D1/D5 receptor antagonist SCH 23390 and is occluded by the potentiation induced by cAMP agonists. An agonist of the D2 receptor, which is negatively coupled to adenylyl cyclase through G alpha i, did not induce potentiation. Although this slow D1/D5 agonist-induced potentiation is partially independent of N-methyl-D-aspartate receptors, it seems to share some steps with and is occluded by the late phase of long-term potentiation (LTP) produced by three repeated trains of nerve stimuli applied to the Schaffer collateral pathway. Similarly, the D1/D5 antagonist SCH 23390 attenuates the late phase of the LTP induced by repeated trains, and the D1/D5 agonist-induced potentiation is blocked by the protein synthesis inhibitor anisomycin. These results suggest that the D1/D5 receptor may be involved in the late, protein synthesis-dependent component of LTP in the hippocampal CA1 region, either as an ancillary component or as a mediator directly contributing to the late phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the circadian function of Drosophila dopamine receptors by using a behaviorally active decapitated preparation that allows for direct application of drugs to the nerve cord. Quinpirole, a D2-like dopamine receptor agonist, induces reflexive locomotion in decapitated flies. We show that the amount of locomotion induced changes as a function of the time of day, with the highest responsiveness to quinpirole during the subjective night. Furthermore, dopamine receptor responsiveness is under circadian control and depends on the normal function of the period gene. The head pacemaker is at least partly dispensable for the circadian modulation of quinpirole-induced locomotion, because changes in agonist responsiveness persist in decapitated flies that are aged for 12 h. This finding suggests a role for the period-dependent molecular oscillators in the body in the modulation of amine receptor responsiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The A2AR is largely coexpressed with D2Rs and enkephalin mRNA in the striatum where it modulates dopaminergic activity. Activation of the A2AR antagonizes D2R-mediated behavioral and neurochemical effects in the basal ganglia through a mechanism that may involve direct A2AR–D2R interaction. However, whether the D2R is required for the A2AR to exert its neural function is an open question. In this study, we examined the role of D2Rs in A2AR-induced behavioral and cellular responses, by using genetic knockout (KO) models (mice deficient in A2ARs or D2Rs or both). Behavioral analysis shows that the A2AR agonist 2–4-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine reduced spontaneous as well as amphetamine-induced locomotion in both D2 KO and wild-type mice. Conversely, the nonselective adenosine antagonist caffeine and the A2AR antagonist 8-(3-chlorostyryl)caffeine produced motor stimulation in mice lacking the D2R, although the stimulation was significantly attentuated. At the cellular level, A2AR inactivation counteracted the increase in enkephalin expression in striatopallidal neurons caused by D2R deficiency. Consistent with the D2 KO phenotype, A2AR inactivation partially reversed both acute D2R antagonist (haloperidol)-induced catalepsy and chronic haloperidol-induced enkephalin mRNA expression. Together, these results demonstrate that A2ARs elicit behavioral and cellular responses despite either the genetic deficiency or pharmacological blockade of D2Rs. Thus, A2AR-mediated neural functions are partially independent of D2Rs. Moreover, endogenous adenosine acting at striatal A2ARs may be most accurately viewed as a facilitative modulator of striatal neuronal activity rather than simply as an inhibitory modulator of D2R neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brn-4 is a member of the POU transcription factor family and is expressed in the central nervous system. In this study, we addressed whether Brn-4 regulates expression of the D1A dopamine receptor gene. We found a functional Brn-4 responsive element in the intron of this gene by means of cotransfection chloramphenical acetyltransferase assays. This region contains two consensus sequences for binding of POU factors. Gel mobility-shift assays using glutathione S-transferase-Brn-4 fusion protein indicated that Brn-4 binds to these sequences. Both these sites are essential for transactivation by Brn-4 because deletion of either significantly reduced this enhancer activity. In situ hybridization revealed colocalization of Brn-4 and D1A mRNAs at the level of a single neuron in the rat striatum where this dopamine receptor is most abundantly expressed. Gel mobility-supershift assay using rat striatal nuclear extract and Brn-4 antibody confirmed the presence of Brn-4 in this brain region and its ability to bind to its consensus sequences in the D1A gene. These data suggest a functional role for Brn-4 in the expression of the D1A dopamine receptor gene both in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of brains of patients with Huntington disease (HD). Transgenic mice that express exon 1 of an abnormal human HD gene (line R6/2) develop neurologic symptoms at 9–11 weeks of age through an unknown mechanism. Analysis of glutamate receptors (GluRs) in symptomatic 12-week-old R6/2 mice revealed decreases compared with age-matched littermate controls in the type 1 metabotropic GluR (mGluR1), mGluR2, mGluR3, but not the mGluR5 subtype of G protein-linked mGluR, as determined by [3H]glutamate receptor binding, protein immunoblotting, and in situ hybridization. Ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors were also decreased, while N-methyl-d-aspartic acid receptors were not different compared with controls. Other neurotransmitter receptors known to be affected in HD were also decreased in R6/2 mice, including dopamine and muscarinic cholinergic, but not γ-aminobutyric acid receptors. D1-like and D2-like dopamine receptor binding was drastically reduced to one-third of control in the brains of 8- and 12-week-old R6/2 mice. In situ hybridization indicated that mGluR and D1 dopamine receptor mRNA were altered as early as 4 weeks of age, long prior to the onset of clinical symptoms. Thus, altered expression of neurotransmitter receptors precedes clinical symptoms in R6/2 mice and may contribute to subsequent pathology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a result of alternative splicing, the D2 gene of the dopamine receptor family exists in two isoforms. The D2 long is characterized by the insertion of 29 amino acids in the third cytoplasmic loop, which is absent in the short isoform. We have produced subtype-specific antibodies against both the D2 short and D2 long isoforms and found a unique compartmentalization between these two isoforms in the primate brain. The D2 short predominates in the cell bodies and projection axons of the dopaminergic cell groups of the mesencephalon and hypothalamus, whereas the D2 long is more strongly expressed by neurons in the striatum and nucleus accumbens, structures targeted by dopaminergic fibers. These results show that the splice variants of the dopamine D2 receptor are differentially distributed and possess distinct functions. The strategic localization of the D2 short isoform in dopaminergic cell bodies and axons strongly suggests that this isoform is the likely dopamine autoreceptor, whereas the D2 long isoform is primarily a postsynaptic receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPγS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPγS to frozen brain sections, with no significant left–right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [35S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.