2 resultados para D-ononitol
em National Center for Biotechnology Information - NCBI
Resumo:
In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, d-ononitol, and d-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753–764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake.
Resumo:
Stachyose synthase (STS) (EC 2.4.1.67) was purified to homogeneity from mature seeds of adzuki bean (Vigna angularis). Electrophoresis under denaturing conditions revealed a single polypeptide of 90 kD. Size-exclusion chromatography of the purified enzyme yielded two activity peaks with apparent molecular masses of 110 and 283 kD. By isoelectric focusing and chromatofocusing the protein was separated into several active forms with isoelectric point values between pH 4.7 and 5.0. Purified STS catalyzed the transfer of the galactosyl group from galactinol to raffinose and myo-inositol. Additionally, the enzyme catalyzed the galactinol-dependent synthesis of galactosylononitol from d-ononitol. The synthesis of a galactosylcyclitol by STS is a new oberservation. Mutual competitive inhibition was observed when the enzyme was incubated with both substrates (raffinose and ononitol) simultaneously. Galactosylononitol could also substitute for galactinol in the synthesis of stachyose from raffinose. Although galactosylononitol was the less-efficient donor, the Michaelis constant value for raffinose was lower in the presence of galactosylononitol (13.2 mm) compared with that obtained in the presence of galactinol (38.6 mm). Our results indicate that STS catalyzes the biosynthesis of galactosylononitol, but may also mediate a redistribution of galactosyl residues from galactosylononitol to stachyose.