12 resultados para Cytochalasin D

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a new approach to detect mechanical forces exerted by locomoting fibroblasts on the substrate. Cells were cultured on elastic, collagen-coated polyacrylamide sheets embedded with 0.2-μm fluorescent beads. Forces exerted by the cell cause deformation of the substrate and displacement of the beads. By recording the position of beads during cell locomotion and after cell removal, we discovered that most forces were radially distributed, switching direction in the anterior region. Deformations near the leading edge were strong, transient, and variable in magnitude, consistent with active local contractions, whereas those in the posterior region were weaker, more stable, and more uniform, consistent with passive resistance. Treatment of cells with cytochalasin D or myosin II inhibitors caused relaxation of the forces, suggesting that they are generated primarily via actin–myosin II interactions; treatment with nocodazole caused no immediate effect on forces. Immunofluorescence indicated that the frontal region of strong deformation contained many vinculin plaques but no apparent concentration of actin or myosin II filaments. Strong mechanical forces in the anterior region, generated by locally activated myosin II and transmitted through vinculin-rich structures, likely play a major role in cell locomotion and in mechanical signaling with the surrounding environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked “hyperpolarization,” i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In neutrophils activated to secrete with formyl-methionyl-leucyl-phenylalanine, intermediate filaments are phosphorylated transiently by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G-kinase). cGMP regulation of vimentin organization was investigated. During granule secretion, cGMP levels were elevated and intermediate filaments were transiently assembled at the pericortex to areas devoid of granules and microfilaments. Microtubule and microfilament inhibitors affected intermediate filament organization, granule secretion, and cGMP levels. Cytochalasin D and nocodazole caused intermediate filaments to assemble at the nucleus, rather than at the pericortex. cGMP levels were elevated in neutrophils by both inhibitors; however, with cytochalasin D, cGMP was elevated earlier and granule secretion was excessive. Nocodazole did not affect normal cGMP elevations, but specific granule secretion was delayed. LY83583, a guanylyl cyclase antagonist, inhibited granule secretion and intermediate filament organization, but not microtubule or microfilament organization. Intermediate filament assembly at the pericortex and secretion were partially restored by 8-bromo-cGMP in LY83583-treated neutrophils, suggesting that cGMP regulates these functions. G-kinase directly induced intermediate filament assembly in situ, and protein phosphatase 1 disassembled filaments. However, in intact cells stimulated with formyl-methionyl-leucyl-phenylalanine, intermediate filament assembly is focal and transient, suggesting that vimentin phosphorylation is compartmentalized. We propose that, in addition to changes in microfilament and microtubule organization, granule secretion is also accompanied by changes in intermediate filament organization, and that cGMP regulates vimentin filament organization via activation of G-kinase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Toxoplasma gondii is a member of the phylum Apicomplexa, a diverse group of intracellular parasites that share a unique form of gliding motility. Gliding is substrate dependent and occurs without apparent changes in cell shape and in the absence of traditional locomotory organelles. Here, we demonstrate that gliding is characterized by three distinct forms of motility: circular gliding, upright twirling, and helical rotation. Circular gliding commences while the crescent-shaped parasite lies on its right side, from where it moves in a counterclockwise manner at a rate of ∼1.5 μm/s. Twirling occurs when the parasite rights itself vertically, remaining attached to the substrate by its posterior end and spinning clockwise. Helical gliding is similar to twirling except that it occurs while the parasite is positioned horizontally, resulting in forward movement that follows the path of a corkscrew. The parasite begins lying on its left side (where the convex side is defined as dorsal) and initiates a clockwise revolution along the long axis of the crescent-shaped body. Time-lapse video analyses indicated that helical gliding is a biphasic process. During the first 180o of the turn, the parasite moves forward one body length at a rate of ∼1–3 μm/s. In the second phase, the parasite flips onto its left side, in the process undergoing little net forward motion. All three forms of motility were disrupted by inhibitors of actin filaments (cytochalasin D) and myosin ATPase (butanedione monoxime), indicating that they rely on an actinomyosin motor in the parasite. Gliding motility likely provides the force for active penetration of the host cell and may participate in dissemination within the host and thus is of both fundamental and practical interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea urchin coelomocytes represent an excellent experimental model system for studying retrograde flow. Their extreme flatness allows for excellent microscopic visualization. Their discoid shape provides a radially symmetric geometry, which simplifies analysis of the flow pattern. Finally, the nonmotile nature of the cells allows for the retrograde flow to be analyzed in the absence of cell translocation. In this study we have begun an analysis of the retrograde flow mechanism by characterizing its kinetic and structural properties. The supramolecular organization of actin and myosin II was investigated using light and electron microscopic methods. Light microscopic immunolocalization was performed with anti-actin and anti-sea urchin egg myosin II antibodies, whereas transmission electron microscopy was performed on platinum replicas of critical point-dried and rotary-shadowed cytoskeletons. Coelomocytes contain a dense cortical actin network, which feeds into an extensive array of radial bundles in the interior. These actin bundles terminate in a perinuclear region, which contains a ring of myosin II bipolar minifilaments. Retrograde flow was arrested either by interfering with actin polymerization or by inhibiting myosin II function, but the pathway by which the flow was blocked was different for the two kinds of inhibitory treatments. Inhibition of actin polymerization with cytochalasin D caused the actin cytoskeleton to separate from the cell margin and undergo a finite retrograde retraction. In contrast, inhibition of myosin II function either with the wide-spectrum protein kinase inhibitor staurosporine or the myosin light chain kinase–specific inhibitor KT5926 stopped flow in the cell center, whereas normal retrograde flow continued at the cell periphery. These differential results suggest that the mechanism of retrograde flow has two, spatially segregated components. We propose a “push–pull” mechanism in which actin polymerization drives flow at the cell periphery, whereas myosin II provides the tension on the actin cytoskeleton necessary for flow in the cell interior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, is highly regulated by many trophic stimuli, and changes in its levels and organization correlate with cytoskeletal changes in normal human epidermal keratinocytes (NHEK). NHEK ODC exhibits a filamentous perinuclear/nuclear localization that becomes more diffuse under conditions that alter actin architecture. We have thus asked whether ODC colocalizes with a component of the NHEK cytoskeleton. Confocal immunofluorescence showed that ODC distribution in NHEK was primarily perinuclear; upon disruption of the actin cytoskeleton with cytochalasin D, ODC distribution was diffuse. The ODC distribution in untreated NHEK overlapped with that of keratin in the perinuclear but not cytoplasmic area; after treatment with cytochalasin D, overlap between staining for ODC and for keratin was extensive. No significant overlap with actin and minimal overlap with tubulin filament systems were observed. Subcellular fractionation by sequential homogenizations and centrifugations of NHEK lysates or detergent and salt extractions of NHEK in situ revealed that ODC protein and activity were detectable in both soluble and insoluble fractions, with mechanical disruption causing additional solubilization of ODC activity (three- to sevenfold above controls). Fractionation and ODC immunoprecipitation from [32P]orthophosphate-labeled NHEK lysates showed that a phosphorylated form of ODC was present in the insoluble fractions. Taken together, these data suggest that two pools of ODC exist in NHEK. The first is the previously described soluble pool, and the second is enriched in phospho-ODC and associated with insoluble cellular material that by immunohistochemistry appears to be organized in conjunction with the keratin cytoskeleton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major histocompatibility complex class I (MHC-I) molecules have been implicated in several nonimmunological functions including the regulation and intracellular trafficking of the insulin-responsive glucose transporter GLUT4. We have used confocal microscopy to compare the effects of insulin on the intracellular trafficking of MHC-I and GLUT4 in freshly isolated rat brown adipose cells. We also used a recombinant vaccinia virus (rVV) to express influenza virus hemagglutinin (HA) as a generic integral membrane glycoprotein to distinguish global versus specific enhancement of protein export from the endoplasmic reticulum (ER) in response to insulin. In the absence of insulin, MHC-I molecules largely colocalize with the ER-resident protein calnexin and remain distinct from intracellular pools of GLUT4. Surprisingly, insulin induces the rapid export of MHC-I molecules from the ER with a concomitant approximately three-fold increase in their level on the cell surface. This ER export is blocked by brefeldin A and wortmannin but is unaffected by cytochalasin D, indicating that insulin stimulates the rapid transport of MHC-I molecules from the ER to the plasma membrane via the Golgi complex in a phosphatidyl-inositol 3-kinase–dependent and actin-independent manner. We further show that the effect of insulin on MHC-I molecules is selective, because insulin does not affect the intracellular distribution or cell-surface localization of rVV-expressed HA. These results demonstrate that in rat brown adipose cells MHC-I molecule export from the ER is stimulated by insulin and provide the first evidence that the trafficking of MHC-I molecules is acutely regulated by a hormone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in polymerized actin during stress conditions were correlated with potato (Solanum tuberosum L.) tuber protein synthesis. Fluorescence microscopy and immunoblot analyses indicated that filamentous actin was nearly undetectable in mature, quiescent aerobic tubers. Mechanical wounding of postharvest tubers resulted in a localized increase of polymerized actin, and microfilament bundles were visible in cells of the wounded periderm within 12 h after wounding. During this same period translational activity increased 8-fold. By contrast, low-oxygen stress caused rapid reduction of polymerized actin coincident with acute inhibition of protein synthesis. Treatment of aerobic tubers with cytochalasin D, an agent that disrupts actin filaments, reduced wound-induced protein synthesis in vivo. This effect was not observed when colchicine, an agent that depolymerizes microtubules, was used. Neither of these drugs had a significant effect in vitro on run-off translation of isolated polysomes. However, cytochalasin D did reduce translational competence in vitro of a crude cellular fraction containing both polysomes and cytoskeletal elements. These results demonstrate the dependence of wound-induced protein synthesis on the integrity of microfilaments and suggest that the dynamics of the actin cytoskeleton may affect translational activity during stress conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have determined the effects of tropomodulin (Tmod), talin, vinculin, and alpha-actinin on ligament fibroblast adhesion. The anterior cruciate ligament (ACL), which lacks a functional healing response, and the medial collateral ligament (MCL), a functionally healing ligament, were selected for this study. The micropipette aspiration technique was used to determine the forces needed to separate ACL and MCL cells from a fibronectin-coated surface. Delivery of exogenous tropomodulin, an actin-filament capping protein, into MCL fibroblasts significantly increased adhesion, whereas its monoclonal antibody (mAb) significantly decreased cell adhesiveness. However, for ACL fibroblasts, Tmod significantly reduced adhesion, whereas its mAb had no effect. mAbs to talin, vinculin, and alpha-actinin significantly decreased the adhesion of both ACL and MCL cells with increasing concentrations of antibody, and also reduced stress fiber formation and cell spreading rate as revealed by immunofluorescence microscopy. Disruption of actin filament and microtubule assembly with cytochalasin D and colchicine, respectively, also significantly reduced adhesion in ACL and MCL cells. In conclusion, both ACL and MCL fibroblast adhesion depends on cytoskeletal assembly; however, this dependence differs between ACL and MCL fibroblasts in many ways, especially in the role of Tmod. These results add yet another possible factor in explaining the clinical differences in healing between the ACL and the MCL.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously identified a testicular phosphoprotein that binds to highly conserved sequences (Y and H elements) in the 3' untranslated regions (UTRs) of testicular mRNAs and suppresses in vitro translation of mRNA constructs that contain these sequences. This protein, testis/brain RNA-binding protein (TB-RBP) also is abundant in brain and binds to brain mRNAs whose 3' UTRs contain similar sequences. Here we show that TB-RBP binds specific mRNAs to microtubules (MTs) in vitro. When TB-RBP is added to MTs reassembled from either crude brain extracts or from purified tubulin, most of the TB-RBP binds to MTs. The association of TB-RBP with MTs requires the assembly of MTs and is diminished by colcemid, cytochalasin D, and high levels of salt. Transcripts from the 3' UTRs of three mRNAs that contain the conserved sequence elements (transcripts for protamine 2, tau protein, and myelin basic protein) are linked by TB-RBP to MTs, whereas transcripts that lack the conserved sequences do not bind TB-RBP. We conclude that TB-RBP serves as an attachment protein for the MT association of specific mRNAs. Considering its ability to arrest translation in vitro, we propose that TB-RBP functions in the storage and transportation of mRNAs to specific intracellular sites where they are translated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.