2 resultados para Cyclic steam injection

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Native cylic nucleotide-gated (CNG) channels are composed of α and β subunits. Olfactory CNG channels were expressed from rat cDNA clones in Xenopus oocytes and studied in inside-out patches. Using tandem dimers composed of linked subunits, we investigated the stoichiometry and arrangement of the α and β subunits. Dimers contained three subunit types: αwt, βwt, and αm. The αm subunit lacks an amino-terminal domain that greatly influences gating, decreasing the apparent affinity of the channel for ligand by 9-fold, making it a reporter for inclusion in the tetramer. Homomeric channels from injection of αwtαwt dimers and from αwt monomers were indistinguishable. Channels from injection of αwtαm dimers had apparent affinities 3-fold lower than αwt homomultimers, suggesting a channel with two αwt and two αm subunits. Channels from coinjection of αwtαwt and ββ dimers were indistinguishable from those composed of α and β monomers and shared all of the characteristics of the α+β phenotype of heteromeric channels. Coinjection of αwtαm and ββ dimers yielded channels also of the α+β phenotype but with an apparent affinity 3-fold lower, indicating the presence of αm in the tetramer and that α+β channels have adjacent α-subunits. To distinguish between an α-α-α-β and an α-α-β-β arrangement, we compared apparent affinities for channels from coinjection of αwtαwt and βαwt or αwtαwt and βαm dimers. These channels were indistinguishable. To further argue against an α-α-α-β arrangement, we quantitatively compared doseâresponse data for channels from coinjection of αwtαm and ββ dimers to those from α and β monomers. Taken together, our results are most consistent with an α-α-β-β arrangement for the heteromeric olfactory CNG channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels present a unique model for studying the molecular mechanisms of channel gating. We have studied the mechanism of potentiation of expressed rod CNG channels by Ni2+ as a first step toward understanding the channel gating process. Here we report that coordination of Ni2+ between histidine residues (H420) on adjacent channel subunits occurs when the channels are open. Mutation of H420 to lysine completely eliminated the potentiation by Ni2+ but did not markedly alter the apparent cGMP affinity of the channel, indicating that the introduction of positive charge at the Ni(2+)-binding site was not sufficient to produce potentiation. Deletion or mutation of most of the other histidines present in the channel did not diminish potentiation by Ni2+. We studied the role of subunit interactions in Ni2+ potentiation by generating heteromultimeric channels using tandem dimers of the rod CNG channel sequence. Injection of single heterodimers in which one subunit contained H420 and the other did not (wt/H420Q or H420Q/wt) resulted in channels that were not potentiated by Ni2+. However, coinjection of both heterodimers into Xenopus oocytes resulted in channels that exhibited potentiation. The H420 residues probably occurred predominantly in nonadjacent subunits when each heterodimer was injected individually, but, when the two heterodimers were coinjected, the H420 residues could occur in adjacent subunits as well. These results suggest that the mechanism of Ni2+ potentiation involves intersubunit coordination of Ni2+ by H420. Based on the preferential binding of Ni2+ to open channels, we suggest that alignment of H420 residues of neighboring subunits into the Ni(2+)-coordinating position may be associated with channel opening.