4 resultados para Cusp Magnetic Field
em National Center for Biotechnology Information - NCBI
Resumo:
I study N electrons and M protons in a magnetic field. It is shown that the total energy per particle is bounded below by a constant independent of M and N, provided the fine structure constant is small. Here, the total energy includes the energy of the magnetic field.
Resumo:
Fall migratory monarch butterflies, tested for their directional responses to magnetic cues under three conditions, amagnetic, normal, and reversed magnetic fields, showed three distinct patterns. In the absence of a magnetic field, monarchs lacked directionality as a group. In the normal magnetic field, monarchs oriented to the southwest with a group pattern typical for migrants. When the horizontal component of the magnetic field was reversed, the butterflies oriented to the northeast. In contrast, nonmigratory monarchs lacked directionality in the normal magnetic field. The results are a direct demonstration of magnetic compass orientation in migratory insects.
Resumo:
Early cleavages of Xenopus embryos were oriented in strong, static magnetic fields. Third-cleavage planes, normally horizontal, were seen to orient to a vertical plane parallel with a vertical magnetic field. Second cleavages, normally vertical, could also be oriented by applying a horizontal magnetic field. We argue that these changes in cleavage-furrow geometries result from changes in the orientation of the mitotic apparatus. We hypothesize that the magnetic field acts directly on the microtubules of the mitotic apparatus. Considerations of the length of the astral microtubules, their diamagnetic anisotropy, and flexural rigidity predict the required field strength for an effect that agrees with the data. This observation provides a clear example of a static magnetic-field effect on a fundamental cellular process, cell division.
Resumo:
We announce a proof of H-stability for the quantized radiation field, with ultraviolet cutoff, coupled to arbitrarily many non-relativistic quantized electrons and static nuclei. Our result holds for arbitrary atomic numbers and fine structure constant. We also announce bounds for the energy of many electrons and nuclei in a classical vector potential and for the eigenvalue sum of a one-electron Pauli Hamiltonian with magnetic field.