2 resultados para Crudeli, Tommaso.
em National Center for Biotechnology Information - NCBI
Resumo:
In the mammalian visual system the formation of eye-specific layers at the thalamic level depends on retinal waves of spontaneous activity, which rely on nicotinic acetylcholine receptor activation. We found that in mutant mice lacking the β2 subunit of the neuronal nicotinic receptor, but not in mice lacking the α4 subunit, retinofugal projections do not segregate into eye-specific areas, both in the dorso-lateral geniculate nucleus and in the superior colliculus. Moreover, β2−/− mice show an expansion of the binocular subfield of the primary visual cortex and a decrease in visual acuity at the cortical level but not in the retina. We conclude that the β2 subunit of the nicotinic acetylcholine receptor is necessary for the anatomical and functional development of the visual system.
Resumo:
Portal hypertension resulting from increased intrahepatic resistance is a common complication of chronic liver diseases and a leading cause of death in patients with liver cirrhosis, a scarring process of the liver that includes components of both increased fibrogenesis and wound contraction. A reduced production of nitric oxide (NO) resulting from an impaired enzymatic function of endothelial NO synthase and an increased contraction of hepatic stellate cells (HSCs) have been demonstrated to contribute to high intrahepatic resistance in the cirrhotic liver. 2-(Acetyloxy) benzoic acid 3-(nitrooxymethyl) phenyl ester (NCX-1000) is a chemical entity obtained by adding an NO-releasing moiety to ursodeoxycholic acid (UDCA), a compound that is selectively metabolized by hepatocytes. In this study we have examined the effect of NCX-1000 and UDCA on liver fibrosis and portal hypertension induced by i.p. injection of carbon tetrachloride in rats. Our results demonstrated that although both treatments reduced liver collagen deposition, NCX-1000, but not UDCA, prevented ascite formation and reduced intrahepatic resistance in carbon tetrachloride-treated rats as measured by assessing portal perfusion pressure. In contrast to UDCA, NCX-1000 inhibited HSC contraction and exerted a relaxing effect similar to the NO donor S-nitroso-N-acetylpenicillamine. HSCs were able to metabolize NCX-1000 and release nitrite/nitrate in cell supernatants. In aggregate these data indicate that NCX-1000, releasing NO into the liver microcirculation, may provide a novel therapy for the treatment of patients with portal hypertension.