22 resultados para Crossover
em National Center for Biotechnology Information - NCBI
Resumo:
Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.
Resumo:
Objective: To determine the effects of temazepam on the quality of sleep and on oxygen saturation during sleep in subjects at high altitude.
Resumo:
We introduce a quantitative framework for assessing the generation of crossovers in DNA shuffling experiments. The approach uses free energy calculations and complete sequence information to model the annealing process. Statistics obtained for the annealing events then are combined with a reassembly algorithm to infer crossover allocation in the reassembled sequences. The fraction of reassembled sequences containing zero, one, two, or more crossovers and the probability that a given nucleotide position in a reassembled sequence is the site of a crossover event are estimated. Comparisons of the predictions against experimental data for five example systems demonstrate good agreement despite the fact that no adjustable parameters are used. An in silico case study of a set of 12 subtilases examines the effect of fragmentation length, annealing temperature, sequence identity and number of shuffled sequences on the number, type, and distribution of crossovers. A computational verification of crossover aggregation in regions of near-perfect sequence identity and the presence of synergistic reassembly in family DNA shuffling is obtained.
Resumo:
During meiosis, crossovers occur at a high level, but the level of noncrossover recombinants is even higher. The biological rationale for the existence of the latter events is not known. It has been suggested that a noncrossover-specific pathway exists specifically to mediate chromosome pairing. Using a physical assay that monitors both crossovers and noncrossovers in cultures of yeast undergoing synchronous meiosis, we find that both types of products appear at essentially the same time, after chromosomes are fully synapsed at pachytene. We have also analyzed a situation in which commitment to meiotic recombination and formation of the synaptonemal complex are coordinately suppressed (mer1 versus mer1 MER2++). We find that suppression is due primarily to restoration of meiosis-specific double-strand breaks, a characteristic of the major meiotic recombination pathway. Taken together, the observations presented suggest that there probably is no noncrossover-specific pathway and that restoration of intermediate events in a single pairing/recombination pathway promotes synaptonemal complex formation. The biological significant of noncrossover recombination remains to be determined, however.
Resumo:
The formation of heteroduplex joints in Escherichia coli recombination is initiated by invasion of double-stranded DNA by a single-stranded homologue. To determine the polarity of the invasive strand, linear molecules with direct terminal repeats were released by in vivo restriction of infecting chimeric phage DNA and heteroduplex products of intramolecular recombination were analyzed. With this substrate, the invasive strand is expected to be incorporated into the circular crossover product and the complementary strand is expected to be incorporated into the reciprocal linear product. Strands of both polarities were incorporated into heteroduplex structures, but only strands ending 3′ at the break were incorporated into circular products. This result indicates that invasion of the 3′-ending strand initiates the heteroduplex joint formation and that the complementary 5′-ending strand is incorporated into heteroduplex structures in the process of reciprocal strand exchange. The polarity of the invasive strand was not affected by recD, recJ, or xonA mutations. However, xonA and recJ mutations increased the proportion of heteroduplexes containing 5′-ending strands. This observation suggests that RecJ exonuclease and exonuclease I may enhance recombination by degrading the displaced strands during branch migration and thereby causing strand exchange to be unidirectional.
Resumo:
Genetic mapping of traits and mutations in mammals is dependent upon linkage analysis. The resolution achieved by this method is related to the number of offspring that can be scored and position of crossovers near a gene. Higher precision mapping is obtained by expanding the collection of progeny from an appropriate cross, which in turn increases the number of potentially informative recombinants. A more efficient approach would be to increase the frequency of recombination, rather than the number of progeny. The anticancer drug cisplatin, which causes DNA strand breakage and is highly recombinogenic in some model organisms, was tested for its ability to induce germ-line recombination in mice. Males were exposed to cisplatin and mated at various times thereafter to monitor the number of crossovers inherited by offspring. We observed a striking increase on all three chromosomes examined and established a regimen that nearly doubled crossover frequency. The timing of the response indicated that the crossovers were induced at the early pachytene stage of meiosis I. The ability to increase recombination should facilitate genetic mapping and positional cloning in mice.
Resumo:
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.
Resumo:
We describe a multiplex nucleic acid assay that identifies and determines the abundance of four different pathogenic retroviruses (HIV-1, HIV-2, and human T-lymphotrophic virus types I and II). Retroviral DNA sequences are amplified in a single, sealed tube by simultaneous PCR assays, and the resulting amplicons are detected in real time by the hybridization of four differently colored, amplicon-specific molecular beacons. The color of the fluorescence generated in the course of amplification identifies which retroviruses are present, and the number of thermal cycles required for the intensity of each color to rise significantly above background provides an accurate measure of the number of copies of each retroviral sequence that were present originally in the sample. Fewer than 10 retroviral genomes can be detected. Moreover, 10 copies of a rare retrovirus can be detected in the presence of 100,000 copies of an abundant retrovirus. Ninety-six samples can be analyzed in 3 hr on a single plate, and the use of a closed-tube format eliminates crossover contamination. Utilizing previously well characterized clinical samples, we demonstrate that each of the pathogenic retroviruses can be identified correctly and no false positives occur. This assay enables the rapid and reliable screening of donated blood and transplantable tissues.
Resumo:
In the major pathway of homologous DNA recombination in prokaryotic cells, the Holliday junction intermediate is processed through its association with RuvA, RuvB, and RuvC proteins. Specific binding of the RuvA tetramer to the Holliday junction is required for the RuvB motor protein to be loaded onto the junction DNA, and the RuvAB complex drives the ATP-dependent branch migration. We solved the crystal structure of the Holliday junction bound to a single Escherichia coli RuvA tetramer at 3.1-Å resolution. In this complex, one side of DNA is accessible for cleavage by RuvC resolvase at the junction center. The refined junction DNA structure revealed an open concave architecture with a four-fold symmetry. Each arm, with B-form DNA, in the Holliday junction is predominantly recognized in the minor groove through hydrogen bonds with two repeated helix-hairpin-helix motifs of each RuvA subunit. The local conformation near the crossover point, where two base pairs are disrupted, suggests a possible scheme for successive base pair rearrangements, which may account for smooth Holliday junction movement without segmental unwinding.
How does a β-hairpin fold/unfold? Competition between topology and heterogeneity in a solvable model
Resumo:
We study the competition between topological effects and sequence inhomogeneities in determining the thermodynamics and the un/folding kinetics of a β-hairpin. Our work utilizes a new exactly solvable model that allows for arbitrary configurations of native contacts. In general, the competition between heterogeneity and topology results in a crossover of the dominant transition state. Interestingly, near this crossover, the single reaction coordinate picture can be seriously misleading. Our results also suggest that inferring the folding pathway from unfolding simulations is not always justified.
Resumo:
BIMD of Aspergillus nidulans belongs to a highly conserved protein family implicated, in filamentous fungi, in sister-chromatid cohesion and DNA repair. We show here that BIMD is chromosome associated at all stages, except from late prophase through anaphase, during mitosis and meiosis, and is involved in several aspects of both programs. First, bimD+ function must be executed during S through M. Second, in bimD6 germlings, mitotic nuclear divisions and overall cellular program occur more rapidly than in wild type. Thus, BIMD, an abundant chromosomal protein, is a negative regulator of normal cell cycle progression. Third, bimD6 reduces the level of mitotic interhomolog recombination but does not alter the ratio between crossover and noncrossover outcomes. Moreover, bimD6 is normal for intrachromosomal recombination. Therefore, BIMD is probably not involved in the enzymology of recombinational repair per se. Finally, during meiosis, staining of the Sordaria ortholog Spo76p delineates robust chromosomal axes, whereas BIMD stains all chromatin. SPO76 and bimD are functional homologs with respect to their roles in mitotic chromosome metabolism but not in meiosis. We propose that BIMD exerts its diverse influences on cell cycle progression as well as chromosome morphogenesis and recombination by modulating chromosome structure.
Resumo:
Crossing over by homologous recombination between monomeric circular chromosomes generates dimeric circular chromosomes that cannot be segregated to daughter cells during cell division. In Escherichia coli, homologous recombination is biased so that most homologous recombination events generate noncrossover monomeric circular chromosomes. This bias is lost in ruv mutants. A novel protein, RarA, which is highly conserved in eubacteria and eukaryotes and is related to the RuvB and the DnaX proteins, γ and τ, may influence the formation of crossover recombinants. Those dimeric chromosomes that do form are converted to monomers by Xer site-specific recombination at the recombination site dif, located in the replication terminus region of the E. coli chromosome. The septum-located FtsK protein, which coordinates cell division with chromosome segregation, is required for a complete Xer recombination reaction at dif. Only correctly positioned dif sites present in a chromosomal dimer are able to access septum-located FtsK. FtsK acts by facilitating a conformational change in the Xer recombination Holliday junction intermediate formed by XerC recombinase. This change provides a substrate for XerD, which then completes the recombination reaction.