4 resultados para Crops and climate.
em National Center for Biotechnology Information - NCBI
Resumo:
This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower δ18O values at numerous sites in the world’s tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century.
Resumo:
The grass family includes some 10,000 species, and it encompasses tremendous morphological, physiological, ecological, and genetic diversity. The phylogeny of the family is becoming increasingly well understood. There were two major radiations of grasses, an early diversification leading to the subfamilies Pooideae, Bambusoideae, and Oryzoideae, and a later one leading to Panicoideae, Chloridoideae, Centothecoideae, and Arundinoideae. The phylogeny can be used to determine the direction of changes in genome arrangement and genome size.
Resumo:
The development of improved technology for agricultural production and its diffusion to farmers is a process requiring investment and time. A large number of studies of this process have been undertaken. The findings of these studies have been incorporated into a quantitative policy model projecting supplies of commodities (in terms of area and crop yields), equilibrium prices, and international trade volumes to the year 2020. These projections show that a “global food crisis,” as would be manifested in high commodity prices, is unlikely to occur. The same projections show, however, that in many countries, “local food crisis,” as manifested in low agricultural incomes and associated low food consumption in the presence of low food prices, will occur. Simulations show that delays in the diffusion of modern biotechnology research capabilities to developing countries will exacerbate local food crises. Similarly, global climate change will also exacerbate these crises, accentuating the importance of bringing strengthened research capabilities to developing countries.