2 resultados para Criança de 1 a 9 anos

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-affinity (Kd = 1 × 10−9 M) anti-platelet GPIIIa has been isolated from serum immune complexes of immunologic thrombocytopenic HIV-1-infected patients (HIV-1-ITP). Affinity-purified anti-platelet antibody reacted with a recombinant GPIIIa-(1–200) and -(1–66) fusion peptide and with an 18-mer GPIIIa-(49–66) peptide but not with seven other GPIIIa peptides spanning the length of GPIIIa. Most of the anti-platelet antibody (≈85%) could be adsorbed to and eluted from a GPIIIa-(49–66) affinity column. Binding of antibody to platelets could be inhibited by GPIIIa-(49–66) or an equimolar peptide-albumin conjugate (IC50 = 2 μM). Sera from 7 control subjects and 10 classic autoimmune thrombocytopenic patients gave background reactivity with GPIIIa-(49–66). HIV-1-ITP sera from 16 patients reacted with a mean OD 6-fold greater than background (range, 4- to 9-fold). Serum anti-GPIIIa-(49–66) concentration correlated inversely with platelet count, R2 = 0.51, n = 31, P < 0.0001. Because mouse platelet GPIIIa-(49–66) has 83% homology with human GPIIIa and mouse monocytes contain Fc receptors for the human IgG1-κ/λ antibody, we determined the in vivo effect of human anti-GPIIIa on mouse platelets. Affinity-purified antibody, 25–50 μg given i.p., resulted in a precipitous drop in platelet count to 30% of baseline, with nadir at 4 hr and return to normal in 36 hr. No effect was noted with control IgG. Acute thrombocytopenia could be prevented or reversed by the injection of the GPIIIa-(49–66) albumin conjugate at zero time or 2 hr after antibody, respectively, but not with a scrambled peptide-albumin conjugate. Thus HIV-1-ITP patients have high-affinity anti-platelet GPIIIa against a major antigenic determinant, GPIIIa-(49–66), which correlates inversely with platelet count and induces thrombocytopenia in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anacardic acids, a class of secondary compounds derived from fatty acids, are found in a variety of dicotyledonous families. Pest resistance (e.g., spider mites and aphids) in Pelargonium xhortorum (geranium) is associated with high levels (approximately 81%) of unsaturated 22:1 omega 5 and 24:1 omega 5 anacardic acids in the glandular trichome exudate. A single dominant locus controls the production of these omega 5 anacardic acids, which arise from novel 16:1 delta 11 and 18:1 delta 13 fatty acids. We describe the isolation and characterization of a cDNA encoding a unique delta 9 14:0-acyl carrier protein fatty acid desaturase. Several lines of evidence indicated that expression of this desaturase leads to the production of the omega 5 anacardic acids involved in pest resistance. First, its expression was found in pest-resistant, but not suspectible, plants and its expression followed the production of the omega 5 anacardic acids in segregating populations. Second, its expression and the occurrence of the novel 16:1 delta 11 and 18:1 delta 13 fatty acids and the omega 5 anacardic acids were specific to tall glandular trichomes. Third, assays of the recombinant protein demonstrated that this desaturase produced the 14:1 delta 9 fatty acid precursor to the novel 16:1 delta 11 and 18:1 delta 13 fatty acids. Based on our genetic and biochemical studies, we conclude that expression of this delta 9 14:0-ACP desaturase gene is required for the production of omega 5 anacardic acids that have been shown to be necessary for pest resistance in geranium.