46 resultados para Cre : lox
em National Center for Biotechnology Information - NCBI
Resumo:
Current mouse gene targeting technology is unable to introduce somatic mutations at a chosen time and/or in a given tissue. We report here that conditional site-specific recombination can be achieved in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand-binding domain of the human estrogen receptor (ER) resulting in a tamoxifen-dependent Cre recombinase, Cre-ERT, which is activated by tamoxifen, but not by estradiol. Transgenic mice were generated expressing Cre-ERT under the control of a cytomegalovirus promoter. We show that excision of a chromosomally integrated gene flanked by loxP sites can be induced by administration of tamoxifen to these transgenic mice, whereas no excision could be detected in untreated animals. This conditional site-specific recombination system should allow the analysis of knockout phenotypes that cannot be addressed by conventional gene targeting.
Resumo:
Developing autoreactive B cells edit their B cell antigen receptor (BCR) in the bone marrow and are clonally deleted when they fail to reexpress an innocent BCR. Here, inducible Cre-loxP-mediated gene inversion is used to change the specificity of the BCR on mature IgM+ IgD+ B cells in vivo to address the fate of lymphocytes encountering self-antigens at this developmental stage. Expression of an autoreactive BCR on mature B cells leads to their rapid elimination from the periphery, a process that is inhibited by constitutive bcl-2 transgene expression in an antigen dose-dependent manner. Thus, selection of mature B cells into the long-lived peripheral pool does not prevent their deletion upon encounter of self-antigens.
Resumo:
The production of subtle or conditional mutations in mice through the combined use of site-specific and homologous recombination has become an increasingly widespread experimental paradigm in mammalian genetics. Embryonic stem cells containing recombinase transgenes that were expressed in the male germ line, but not in other tissues or in the embryonic stem cells themselves, would substantially simplify the production of such alleles. Here we show that transgenes comprised of the mouse protamine 1 promoter and the Cre recombinase coding sequence mediate the efficient recombination of a Cre target transgene in the male germ line, but not in other tissues. Embryonic stem cell lines generated from one of these transgenic strains were transfected with targeting vectors that included loxP-flanked selectable markers, and homologously recombined alleles containing the marker and functional loxP sites were isolated. These results establish the potential of the system for substantially reducing the time, effort, and resources required to produce homologously recombined alleles in mice that have been secondarily rearranged by a site-specific recombinase.
Resumo:
von Hippel–Lindau (VHL) disease is a pleomorphic familial tumor syndrome that is characterized by the development of highly vascularized tumors. Homozygous disruption of the VHL gene in mice results in embryonic lethality. To investigate VHL function in the adult we have generated a conditional VHL null allele (2-lox allele) and null allele (1-lox allele) by Cre-mediated recombination in embryonic stem cells. We show here that mice heterozygous for the 1-lox allele develop cavernous hemangiomas of the liver, a rare manifestation of the human disease. Histologically these tumors were associated with hepatocellular steatosis and focal proliferations of small vessels. To study the cellular origin of these lesions we inactivated VHL tissue-specifically in hepatocytes. Deletion of VHL in the liver resulted in severe steatosis, many blood-filled vascular cavities, and foci of increased vascularization within the hepatic parenchyma. These histopathological changes were similar to those seen in livers from mice heterozygous for the 1-lox allele. Hypoxia-inducible mRNAs encoding vascular endothelial growth factor, glucose transporter 1, and erythropoietin were up-regulated. We thus provide evidence that targeted inactivation of mouse VHL can model clinical features of the human disease and underline the importance of the VHL gene product in the regulation of hypoxia-responsive genes in vivo.
Resumo:
It has been suggested that recombination and shuffling between exons has been a key feature in the evolution of proteins. We propose that this strategy could also be used for the artificial evolution of proteins in bacteria. As a first step, we illustrate the use of a self-splicing group I intron with inserted lox-Cre recombination site to assemble a very large combinatorial repertoire (> 10(11) members) of peptides from two different exons. Each exon comprised a repertoire of 10 random amino acids residues; after splicing, the repertoires were joined together through a central five-residue spacer to give a combinatorial repertoire of 25-residue peptides. The repertoire was displayed on filamentous bacteriophage by fusion to the pIII phage coat protein and selected by binding to several proteins, including beta-glucuronidase. One of the peptides selected against beta-glucuronidase was chemically synthesized and shown to inhibit the enzymatic activity (inhibition constant: 17 nM); by further exon shuffling, an improved inhibitor was isolated (inhibition constant: 7 nM). Not only does this approach provide the means for making very large peptide repertoires, but we anticipate that by introducing constraints in the sequences of the peptides and of the linker, it may be possible to evolve small folded peptides and proteins.
Resumo:
Gene disruptions and deletions of up to 20kb have been generated by homologous recombination with appropriate targeting vectors in murine embryonic stem (ES) cells. Because we could not obtain a deletion of about 200 kb in the mouse amyloid precursor protein gene by the classical technique, we employed strategies involving the insertion of loxP sites upstream and downstream of the region to be deleted by homologous recombination and elicited excision of the loxP-flanked region by introduction of a Cre expression vector into the ES cells. In the first approach, the loxP sequences were inserted in two successive steps and after each step, ES cell clones were isolated and characterized. Deletion of the loxP-flanked sequence was accomplished by introducing the cre gene in a third step. In the second approach, ES cells containing the upstream loxP cassette were electroporated simultaneously with the downstream loxP targeting vector and the Cre expression plasmid. ES cells were obtained that gave rise to chimeric mice capable of germ-line transmission of the deleted amyloid precursor protein allele.
Resumo:
Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in development and disease. The cre-loxP system from bacteriophage P1 has been used in transgenic animals to induce site-specific DNA recombination leading to gene activation or deletion. To regulate the recombination in a spatiotemporally controlled manner, we constructed a recombinant adenoviral vector, Adv/cre, that contained the cre recombinase gene under regulation of the herpes simplex virus thymidine kinase promoter. The efficacy and target specificity of this vector in mediating loxP-dependent recombination were analyzed in mice that had been genetically engineered to contain loxP sites in their genome. After intravenous injection of the Adv/cre vector into adult animals, the liver and spleen showed the highest infectivity of the adenovirus as well as the highest levels of recombination, whereas other tissues such as kidney, lung, and heart had lower levels of infection and recombination. Only trace levels of recombination were detected in the brain. However, when the Adv/cre vector was injected directly into specific regions of the adult brain, including the cerebral cortex, hippocampus, and cerebellum, recombination was detectable at the injection site. Furthermore, when the Adv/cre vector was injected into the forebrains of neonatal mice, the rearranged toxP locus from recombination could be detected in the injected regions for at least 8 weeks. Taken together, these results demonstrate that the Adv/cre vector expressing a functional cre protein is capable of mediating loxP-dependent recombination in various tissues and the recombined gene locus may in some cases be maintained for an extended period. The use of the adenovirus vector expressing cre combined with localized delivery to specific tissues may provide an efficient means to achieve conditional gene expression or knockout with precise spatiotemporal control.
Resumo:
Chromosome rearrangements, such as large deletions, inversions, or translocations, mediate migration of large DNA segments within or between chromosomes, which can have major effects on cellular genetic control. A method for chromosome manipulation would be very useful for studying the consequences of large-scale DNA rearrangements in mammalian cells or animals. With the use of the Cre-loxP recombination system of bacteriophage P1, we induced a site-specific translocation between the Dek gene on chromosome 13 and the Can gene on chromosome 2 in mouse embryonic stem cells. The estimated frequency of Cre-mediated translocation between the nonhomologous mouse chromosomes is approximately 1 in 1200-2400 embryonic stem cells expressing Cre recombinase. These results demonstrate the feasibility of site-specific recombination systems for chromosome manipulation in mammalian cells in vivo, breaking ground for chromosome engineering.
Resumo:
We have developed a strategy to generate mutant genes in mammalian cells in a conditional manner by employing a fusion protein, Cre-ER, consisting of the loxP site-specific Cre recombinase linked to the ligand-binding domain of the human estrogen receptor. We have established homozygous retinoid X receptor alpha-negative (RXR alpha-/-) F9 embryonal carcinoma cells constitutively expressing Cre-ER and have shown that estradiol or the estrogen agonist/antagonist 4-hydroxytamoxifen efficiently induced the recombinase activity, whereas no activity was detected in the absence of ligand or in the presence of the antiestrogen ICI 164,384. Furthermore, using a targeting vector containing a selection marker flanked by loxP sites, we have inactivated one retinoic acid receptor alpha allele in such a line, demonstrating that the presence of the recombinase does not inhibit homologous recombination. Combining this conditional site-specific recombination system with tissue-specific expression of Cre-ER may allow modification of the mammalian genome in vivo in a spatiotemporally regulated manner.
Resumo:
CREB, the cAMP response element binding protein, is a key transcriptional regulator of a large number of genes containing a CRE consensus sequence in their upstream regulatory regions. Mice with a hypomorphic allele of CREB that leads to a loss of the CREBα and Δ isoforms and to an overexpression of the CREBβ isoform are viable. Herein we report the generation of CREB null mice, which have all functional isoforms (CREBα, β, and Δ) inactivated. In contrast to the CREBαΔ mice, CREB null mice are smaller than their littermates and die immediately after birth from respiratory distress. In brain, a strong reduction in the corpus callosum and the anterior commissures is observed. Furthermore, CREB null mice have an impaired fetal T cell development of the αβ lineage, which is not affected in CREBαΔ mice on embryonic day 18.5. Overall thymic cellularity in CREB null mice is severely reduced affecting all developmental stages of the αβ T cell lineage. In contrast γδ T cell differentiation is normal in CREB mutant mice.
Resumo:
cAMP, through the activation of cAMP-dependent protein kinase (PKA), is involved in transcriptional regulation. In eukaryotic cells, cAMP is not considered to alter the binding affinity of CREB/ATF to cAMP-responsive element (CRE) but to induce serine phosphorylation and consequent increase in transcriptional activity. In contrast, in prokaryotic cells, cAMP enhances the DNA binding of the catabolite repressor protein to regulate the transcription of several operons. The structural similarity of the cAMP binding sites in catabolite repressor protein and regulatory subunit of PKA type II (RII) suggested the possibility of a similar role for RII in eukaryotic gene regulation. Herein we report that RIIβ subunit of PKA is a transcription factor capable of interacting physically and functionally with a CRE. In contrast to CREB/ATF, the binding of RIIβ to a CRE was enhanced by cAMP, and in addition, RIIβ exhibited transcriptional activity as a Gal4-RIIβ fusion protein. These experiments identify RIIβ as a component of an alternative pathway for regulation of CRE-directed transcription in eukaryotic cells.
Resumo:
The tumor necrosis factor (TNF) family cytokines lymphotoxin (LT) α and LTβ form heterotrimers that are expressed on the surface of activated lymphocytes and natural killer cells; LTα homotrimers can be secreted as well. Mice with a disrupted LTα gene lack lymph nodes (LN), Peyer’s patches (PP), and follicular dendritic cell (FDC) networks and reveal profound defects of the splenic architecture. However, it is unclear which of these abnormalities is the result of the absence in LTα homotrimers or LTαβ heterotrimers. To distinguish between these two possibilities, a mouse strain deficient in LTβ was created employing Cre/loxP-mediated gene targeting. Mice deficient in LTβ reveal severe defects in organogenesis of the lymphoid system similar to those of LTα−/− mice, except that mesenteric and cervical LN are present in most LTβ-deficient mice. Both LTβ- and LTα-deficient mice show significant lymphocytosis in the circulation and peritoneal cavity and lymphocytic infiltrations in lungs and liver. After immunization, PNA-positive B cell clusters were detected in the splenic white pulp of LTβ-deficient mice, but FDC networks were severely underdeveloped. Collectively, these results indicate that LTα can signal independently from LTβ in the formation of PNA-positive foci in the spleen, and especially in the development of mesenteric and cervical LN.
Resumo:
Electrical stimulation of neonatal cardiac myocytes produces hypertrophy and cellular maturation with increased mitochondrial content and activity. To investigate the patterns of gene expression associated with these processes, cardiac myocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation [c-fos, c-jun, JunB, nuclear respiratory factor 1 (NRF-1)], mitochondrial proliferation [cytochrome c (Cyt c), cytochrome oxidase], and mitochondrial differentiation [carnitine palmitoyltransferase I (CPT-I) isoforms] were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25–3 hr) and followed sequentially by c-jun (0.5–3 hr), JunB (0.5–6 hr), NRF-1 (1–12 hr), Cyt c (12–72 hr), and muscle-specific CPT-I (48–72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA, thus supporting the developmental fidelity of this pattern of gene regulation. Consistent with a transcriptional mechanism, electrical stimulation increased c-fos, β-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element, and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the NRF-1 and CRE sites inhibited the induction by electrical stimulation (5-fold and 2-fold, respectively) whereas mutation of the Sp-1 site maintained or increased the fold induction. This finding is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c and suggests that induction of these transcription factors is a prerequisite for the transcriptional activation of Cyt c expression. These results support a regulatory role for NRF-1 and possibly AP-1 in the initiation of mitochondrial proliferation.
Resumo:
Glycosylphosphatidylinositol (GPI)-anchored proteins are widely distributed on plasma membranes of eukaryotes. More than 50 GPI-anchored proteins have been shown to be spatiotemporally expressed in mice with a deficiency of GPI-anchor biosynthesis that causes embryonic lethality. Here, we examine the functional roles of GPI-anchored proteins in mouse skin using the Cre-loxP recombination system. We disrupted the Pig-a gene, an X-linked gene essential for GPI-anchor biosynthesis, in skin. The Cre-mediated Pig-a disruption occurred in skin at almost 100% efficiency in male mice bearing two identically orientated loxP sites within the Pig-a gene. Expression of GPI-anchored proteins was completely absent in the skin of these mice. The skin of such mutants looked wrinkled and more scaly than that of wild-type mice. Furthermore, histological examination of mutant mice showed that the epidermal horny layer was tightly packed and thickened. Electron microscopy showed that the intercellular space was narrow and there were many small vesicles embedded in the intercellular space that were not observed in equivalent wild-type mouse skin preparations. Mutant mice died within a few days after birth, suggesting that Pig-a function is essential for proper skin differentiation and maintenance.