65 resultados para Cowpea aphid-borne mosaic virus

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the distribution of the cauliflower mosaic virus (CaMV) aphid transmission factor (ATF), produced via a baculovirus recombinant, within Sf9 insect cells. Immunogold labeling revealed that the ATF colocalizes with an atypical cytoskeletal network. Detailed observation by electron microscopy demonstrated that this network was composed of microtubules decorated with paracrystalline formations, characteristic of the CaMV ATF. A derivative mutant of the ATF, unable to self-assemble into paracrystals, was also analyzed. This mutant formed a net-like structure, with a mesh of four nanometers, tightly sheathing microtubules. Both the ATF– and the derivative mutant–microtubule complexes were highly stable. They resisted dilution-, cold-, and calcium-induced microtubule disassembly as well as a combination of all three for over 6 hr. CaMV ATF cosedimented with microtubules and, surprisingly, it bound to Taxol-stabilized microtubules at high ionic strength, thus suggesting an atypical interaction when compared with that usually described for microtubule-binding proteins. Using immunofluorescence double labeling we also demonstrated that the CaMV ATF colocalizes with the microtubule network when expressed in plant cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two distinct members of the mitogen-activated protein (MAP) kinase family, are activated in tobacco resisting infection by tobacco mosaic virus (TMV). WIPK activation by TMV depends on the disease-resistance gene N because infection of susceptible tobacco not carrying the N gene failed to activate WIPK. Activation of WIPK required not only posttranslational phosphorylation but also a preceding rise in its mRNA and de novo synthesis of WIPK protein. The induction by TMV of WIPK mRNA and protein also occurred systemically. Its activation at the mRNA, protein, and enzyme levels was independent of salicylic acid. The regulation of WIPK at multiple levels by an N gene-mediated signal(s) suggests that this MAP kinase may be an important component upstream of salicylic acid in the signal-transduction pathway(s) leading to local and systemic resistance to TMV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salicylic acid (SA) plays an important role in signaling the activation of plant defense responses against pathogen attack including induction of pathogenesis-related (PR) proteins. To gain further insight into the SA-mediated signal transduction pathway, we have isolated and characterized a tobacco mosaic virus (TMV)-inducible myb oncogene homolog (myb1) from tobacco. The myb1 gene was induced upon TMV infection during both the hypersensitive response and development of systemic acquired resistance in the resistant tobacco cultivar following the rise of endogenous SA, but was not activated in the susceptible cultivar that fails to accumulate SA. The myb1 gene was also induced by incompatible bacterial pathogen Pseudomonas syringae pv. syringae during the hypersensitive response. Exogenous SA treatment rapidly (within 15 min) activated the expression of myb1 in both resistant and susceptible tobacco cultivars with the subsequent induction of PR genes occurring several hours later. Biologically active analogs of SA and 2,6-dichloroisonicotinic acid (a synthetic functional analog of SA), which induce PR genes and enhanced resistance, also activated the myb1 gene. In contrast, biologically inactive analogs were poor inducers of myb1 gene expression. Furthermore, the recombinant Myb1 protein was shown to specifically bind to a Myb-binding consensus sequence found in the promoter of the PR-1a gene. Taken together, these results suggest that the tobacco myb1 gene encodes a signaling component downstream of SA that may participate in transcriptional activation of PR genes and plant disease resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By examining the front of virus invasion in immature pea embryos infected with pea seed-borne mosaic virus (PSbMV), the selective control of different host genes has been observed. From our observations, the early responses to PSbMV replication can be grouped into three classes, inhibited host gene expression, induced host gene expression, and no effect on a normal host function. The expression of two heat-inducible genes encoding HSP70 and polyubiquitin was induced coordinately with the onset of virus replication and the down-regulation of two other genes encoding lipoxygenase and heat shock cognate protein. The down-regulation was part of a general suppression of host gene expression that may be achieved through the degradation of host transcripts. We discuss the possibilities of whether the induction of HSP70 and polyubiquitin genes represents a requirement for the respective protein products by the virus or is merely a consequence of the depletion of other host transcripts. The former is feasible, as the induction of both genes does result in increased HSP70 and ubiquitin accumulation. This also indicates that, in contrast to some animal virus infections, there is not a general inhibition of translation of host mRNAs following PSbMV infection. This selective control of host gene expression was observed in all cell types of the embryo and identifies mechanisms of cellular disruption that could act as triggers for symptom expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N gene, a member of the Toll-IL-1 homology region–nucleotide binding site–leucine-rich repeat region (LRR) class of plant resistance genes, encodes two transcripts, NS and NL, via alternative splicing of the alternative exon present in the intron III. The NS transcript, predicted to encode the full-length N protein containing the Toll-IL-1 homology region, nucleotide binding site, and LRR, is more prevalent before and for 3 hr after tobacco mosaic virus (TMV) infection. The NL transcript, predicted to encode a truncated N protein (Ntr) lacking 13 of the 14 repeats of the LRR, is more prevalent 4–8 hr after TMV infection. Plants harboring a cDNA-NS transgene, capable of encoding an N protein but not an Ntr protein, fail to exhibit complete resistance to TMV. Transgenic plants containing a cDNA-NS-bearing intron III and containing 3′ N-genomic sequences, encoding both NS and NL transcripts, exhibit complete resistance to TMV. These results suggest that both N transcripts and presumably their encoded protein products are necessary to confer complete resistance to TMV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alfalfa mosaic virus (AlMV) coat protein is involved in systemic infection of host plants, and a specific mutation in this gene prevents the virus from moving into the upper uninoculated leaves. The coat protein also is required for different viral functions during early and late infection. To study the role of the coat protein in long-distance movement of AlMV independent of other vital functions during virus infection, we cloned the gene encoding the coat protein of AlMV into a tobacco mosaic virus (TMV)-based vector Av. This vector is deficient in long-distance movement and is limited to locally inoculated leaves because of the lack of native TMV coat protein. Expression of AlMV coat protein, directed by the subgenomic promoter of TMV coat protein in Av, supported systemic infection with the chimeric virus in Nicotiana benthamiana, Nicotiana tabacum MD609, and Spinacia oleracea. The host range of TMV was extended to include spinach as a permissive host. Here we report the alteration of a host range by incorporating genetic determinants from another virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brome mosaic virus (BMV), a member of the alphavirus-like superfamily of positive-strand RNA viruses, encodes two proteins, 1a and 2a, that interact with each other, with unidentified host proteins, and with host membranes to form the viral RNA replication complex. Yeast expressing 1a and 2a support replication and subgenomic mRNA synthesis by BMV RNA3 derivatives. Using a multistep selection and screening process, we have isolated yeast mutants in multiple complementation groups that inhibit BMV-directed gene expression. Three complementation groups, represented by mutants mab1–1, mab2–1, and mab3–1 (for maintenance of BMV functions), were selected for initial study. Each of these mutants has a single, recessive, chromosomal mutation that inhibits accumulation of positive- and negative-strand RNA3 and subgenomic mRNA. BMV-directed gene expression was inhibited when the RNA replication template was introduced by in vivo transcription from DNA or by transfection of yeast with in vitro transcripts, confirming that cytoplasmic RNA replication steps were defective. mab1–1, mab2–1, and mab3–1 slowed yeast growth to varying degrees and were temperature-sensitive, showing that the affected genes contribute to normal cell growth. In wild-type yeast, expression of the helicase-like 1a protein increased the accumulation of 2a mRNA and the polymerase-like 2a protein, revealing a new level of viral regulation. In association with their other effects, mab1–1 and mab2–1 blocked the ability of 1a to stimulate 2a mRNA and protein accumulation, whereas mab3–1 had elevated 2a protein accumulation. Together, these results show that BMV RNA replication in yeast depends on multiple host genes, some of which directly or indirectly affect the regulated expression and accumulation of 2a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intercellular spaces are often the first sites invaded by pathogens. In the spaces of tobacco mosaic virus (TMV)-infected and necrotic lesion-forming tobacco (Nicotiana tabacum L.) leaves, we found that an inducer for acidic pathogenesis-related (PR) proteins was accumulated. The induction activity was recovered in gel-filtrated fractions of low molecular mass with a basic nature, into which authentic spermine (Spm) was eluted. We quantified polyamines in the intercellular spaces of the necrotic lesion-forming leaves and found 20-fold higher levels of free Spm than in healthy leaves. Among several polyamines tested, exogenously supplied Spm induced acidic PR-1 gene expression. Immunoblot analysis showed that Spm treatment increased not only acidic PR-1 but also acidic PR-2, PR-3, and PR-5 protein accumulation. Treatment of healthy tobacco leaves with salicylic acid (SA) caused no significant increase in the level of endogenous Spm, and Spm did not increase the level of endogenous SA, suggesting that induction of acidic PR proteins by Spm is independent of SA. The size of TMV-induced local lesions was reduced by Spm treatment. These results indicate that Spm accumulates outside of cells after lesion formation and induces both acidic PR proteins and resistance against TMV via a SA-independent signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The turnip yellow mosaic virus genomic RNA terminates at its 3' end in a tRNA-like structure that is capable of specific valylation. By directed mutation, the aminoacylation specificity has been switched from valine to methionine, a novel specificity for viral tRNA-like structures. The switch to methionine specificity, assayed in vitro under physiological buffer conditions with wheat germ methionyl-tRNA synthetase, required mutation of the anticodon loop and the acceptor stem pseudoknot. The resultant methionylatable genomes are infectious and stable in plants, but genomes that lack strong methionine acceptance (as previously shown with regard to valine acceptance) replicate poorly. The results indicate that amplification of turnip yellow mosaic virus RNA requires aminoacylation, but that neither the natural (valine) specificity nor interaction specifically with valyl-tRNA synthetase is crucial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To fully understand vascular transport of plant viruses, the viral and host proteins, their structures and functions, and the specific vascular cells in which these factors function must be determined. We report here on the ability of various cDNA-derived coat protein (CP) mutants of tobacco mosaic virus (TMV) to invade vascular cells in minor veins of Nicotiana tabacum L. cv. Xanthi nn. The mutant viruses we studied, TMV CP-O, U1mCP15-17, and SNC015, respectively, encode a CP from a different tobamovirus (i.e., from odontoglossum ringspot virus) resulting in the formation of non-native capsids, a mutant CP that accumulates in aggregates but does not encapsidate the viral RNA, or no CP. TMV CP-O is impaired in phloem-dependent movement, whereas U1mCP15-17 and SNC015 do not accumulate by phloem-dependent movement. In developmentally-defined studies using immunocytochemical analyses we determined that all of these mutants invaded vascular parenchyma cells within minor veins in inoculated leaves. In addition, we determined that the CPs of TMV CP-O and U1mCP15-17 were present in companion (C) cells of minor veins in inoculated leaves, although more rarely than CP of wild-type virus. These results indicate that the movement of TMV into minor veins does not require the CP, and an encapsidation-competent CP is not required for, but may increase the efficiency of, movement into the conducting complex of the phloem (i.e., the C cell/sieve element complex). Also, a host factor(s) functions at or beyond the C cell/sieve element interface with other cells to allow efficient phloem-dependent accumulation of TMV CP-O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that cloned plant disease resistance genes could be transferred from resistant to susceptible plant species to control important crop plant diseases. The recently cloned N gene of tobacco confers resistance to the viral pathogen, tobacco mosaic virus. We generated transgenic tomato plants bearing the N gene and demonstrate that N confers a hypersensitive response and effectively localizes tobacco mosaic virus to sites of inoculation in transgenic tomato, as it does in tobacco. The ability to reconstruct the N-mediated resistance response to tobacco mosaic virus in tomato demonstrates the utility of using isolated resistance genes to protect crop plants from diseases, and it demonstrates that all the components necessary for N-mediated resistance are conserved in tomato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A virus-based vector was used for the transient expression of the alfalfa mosaic virus coat protein (CP) gene in protoplasts and plants. The accumulation of wild-type CP conferred strong protection against subsequent alfalfa mosaic virus infection, enabling the efficacy of CP mutants to be determined without developing transgenic plants. Expression of the CP mRNA alone without CP accumulation conferred weaker protection against infection. The activity of the N-terminal mutant CPs in protection did not correlate with their activities in genome activation. The activity of a C-terminal mutant suggested that encapsidation did not have a role in protection. Our results indicate that interaction of the CP with alfalfa mosaic virus RNA is not important in protection, thereby leaving open the possibility that interactions with host factors lead to protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we show that yeast expressing brome mosaic virus (BMV) replication proteins 1a and 2a and replicating a BMV RNA3 derivative can be extracted to yield a template-dependent BMV RNA-dependent RNA polymerase (RdRp) able to synthesize (-)-strand RNA from BMV (+)-strand RNA templates added in vitro. This virus-specific yeast-derived RdRp mirrored the template selectivity and other characteristics of RdRp from BMV-infected plants. Equivalent extracts from yeast expressing 1a and 2a but lacking RNA3 contained normal amounts of 1a and 2a but had no RdRp activity on BMV RNAs added in vitro. To determine which RNA3 sequences were required in vivo to yield RdRp activity, we tested deletions throughout RNA3, including the 5',3', and intercistronic noncoding regions, which contain the cis-acting elements required for RNA3 replication in vivo. RdRp activity was obtained only from cells expressing 1a, 2a, and RNA3 derivatives retaining both 3' and intercistronic noncoding sequences. Strong correlation between extracted RdRp activity and BMV (-)-strand RNA accumulation in vivo was found for all RNA3 derivatives tested. Thus, extractable in vitro RdRp activity paralleled formation of a complex capable of viral RNA synthesis in vivo. The results suggest that assembly of active RdRp requires not only viral proteins but also viral RNA, either to directly contribute some nontemplate function or to recruit essential host factors into the RdRp complex and that sequences at both the 3'-terminal initiation site and distant internal sites of RNA3 templates may participate in RdRp assembly and initiation of (-)-strand synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants can recognize and resist invading pathogens by signaling the induction of rapid defense responses. Often these responses are mediated by single dominant resistance genes (R genes). The products of R genes have been postulated to recognize the pathogen and trigger rapid host defense responses. Here we describe isolation of the classical resistance gene N of tobacco that mediates resistance to the well-characterized pathogen tobacco mosaic virus (TMV). The N gene was isolated by transposon tagging using the maize Activator (Ac) transposon. We confirmed isolation of the N gene by complementation of the TMV-sensitive phenotype with a genomic DNA fragment. Sequence analysis of the N gene shows that it encodes a protein with an amino-terminal domain similar to that of the cytoplasmic domains of the Drosophila Toll protein and the interleukin 1 receptor in mammals, a putative nucleotide-binding site and 14 imperfect leucine-rich repeats. The presence of these functional domains in the predicted N gene product is consistent with the hypothesis that the N resistance gene functions in a signal transduction pathway. Similarities of N to Toll and the interleukin 1 receptor suggest a similar signaling mechanism leading to rapid gene induction and TMV resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) belong to the Cucumovirus genus. They have a tripartite genome consisting of single-stranded RNAs, designated 1, 2, and 3. Previous studies have shown that viable pseudorecombinants could be created in vitro by reciprocal exchanges between CMV and TAV RNA 3, but exchanges of RNAs 1 and 2 were replication deficient. When we coinoculated CMV RNAs 2 and 3 along with TAV RNAs 1 and 2 onto Nicotiana benthamiana, a hybrid quadripartite virus appeared that consisted of TAV RNA 1, CMV RNAs 2 and 3, and a distinctive chimeric RNA originating from a recombination between CMV RNA 2 and the 3′-terminal 320 nucleotides of TAV RNA 2. This hybrid arose by means of segment reassortment and RNA recombination to produce an interspecific hybrid with the TAV helicase subunit and the CMV polymerase subunit. To our knowledge, this is the first report demonstrating the evolution of a new plant or animal virus strain containing an interspecific hybrid replicase complex.