6 resultados para Course selection (students)
em National Center for Biotechnology Information - NCBI
Resumo:
Objective: To develop and evaluate an effective, community based, multiagency course (involving doctors, nurses, non-health statutory workers, and voluntary organisations) for all Leicester medical students, in response to the General Medical Council’s recommendation of preparing the doctors of tomorrow to handle society’s medical problems.
Resumo:
Immature CD4+CD8+ thymocytes expressing T-cell antigen receptors (TCR) are selected by TCR-mediated recognition of peptides associated with major histocompatibility complex molecules on thymic stromal cells. Selection ensures reactivity of the mature cells to foreign antigens and tolerance to self. Although much has been learned about the factors that determine whether a thymocyte with a given specificity will be positively or negatively selected, selection as an aspect of the developmental process as a whole is less well-understood. Here we invoke a model in which thymocytes tune their response characteristics individually and dynamically in the course of development. Cellular development and selection are driven by receptor-mediated metabolic perturbations. Perturbation is a measure of the net intracellular change induced by external stimulation. It results from the integration of several signals and countersignals over time and therefore depends on the environment and the maturation stage of the cell. Individual cell adaptation limits the range of perturbations. Such adaptation renders thymocytes less sensitive to the level of stimulation per se, but responsive to environmental changes in that level. This formulation begins to explain the mechanisms that link developmental and selection events to each other.
Resumo:
In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.
Resumo:
Because it is widely accepted that providing information online will play a major role in both the teaching and practice of medicine in the near future, a short formal course of instruction in computer skills was proposed for the incoming class of students entering medical school at the State University of New York at Stony Brook. The syllabus was developed on the basis of a set of expected outcomes, which was accepted by the dean of medicine and the curriculum committee for classes beginning in the fall of 1997. Prior to their arrival, students were asked to complete a self-assessment survey designed to elucidate their initial skill base; the returned surveys showed students to have computer skills ranging from complete novice to that of a systems engineer. The classes were taught during the first three weeks of the semester to groups of students separated on the basis of their knowledge of and comfort with computers. Areas covered included computer basics, e-mail management, MEDLINE, and Internet search tools. Each student received seven hours of hands-on training followed by a test. The syllabus and emphasis of the classes were tailored to the initial skill base but the final test was given at the same level to all students. Student participation, test scores, and course evaluations indicated that this noncredit program was successful in achieving an acceptable level of comfort in using a computer for almost all of the student body.
Resumo:
As people have more difficulty taking time away from work to attend conferences and workshops, the idea of offering courses via the Web has become more desirable. Addressing a need voiced by Medical Library Association membership, the authors developed a Web-based continuing-education course on the subject of the librarian's role in evidence-based medicine. The aim of the course was to provide medical librarians with a well-constructed, content-rich learning experience available to them at their convenience via the Web. This paper includes a discussion of the considerations that need to be taken into account when developing Web-based courses, the issues that arise when the information delivery changes from face-to-face to online, the changing role of the instructor, and the pros and cons of offering Web-based versus traditional courses. The results of the beta test and future plans for the course are also discussed.
Resumo:
Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE.