20 resultados para Correction grammaticale

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice generated by disrupting the clotting factor IX gene exhibit severe bleeding disorder and closely resemble the phenotype seen in hemophilia B patients. Here we demonstrate that a single intraportal injection of a recombinant adeno-associated virus (AAV) vector encoding canine factor IX cDNA under the control of a liver-specific enhancer/promoter leads to a long-term and complete correction of the bleeding disorder. High level expression of up to 15–20 μg/ml of canine factor IX was detected in the plasma of mice injected with 5.6 × 1011 particles of an AAV vector for >5 months. The activated partial thromboplastin time of the treated mice was fully corrected to higher than normal levels. Liver-specific expression of canine factor IX was confirmed by immunofluorescence staining, and secreted factor IX protein was identified in the mouse plasma by Western blotting. All treated mice survived the tail clip test without difficulty. Thus, a single intraportal injection of a recombinant adeno-associated virus vector expressing factor IX successfully cured the bleeding disorder of hemophilia B mice, proving the feasibility of using AAV-based vectors for liver-targeted gene therapy of genetic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast genome encodes four proteins (Pms1 and Mlh1–3) homologous to the bacterial mismatch repair component, MutL. Using two hybrid-interaction and coimmunoprecipitation studies, we show that these proteins can form only three types of complexes in vivo. Mlh1 is the common component of all three complexes, interacting with Pms1, Mlh2, and Mlh3, presumptively as heterodimers. The phenotypes of single deletion mutants reveal distinct functions for the three heterodimers during meiosis: in a pms1 mutant, frequent postmeiotic segregation indicates a defect in the correction of heteroduplex DNA, whereas the frequency of crossing-over is normal. Conversely, crossing-over in the mlh3 mutant is reduced to ≈70% of wild-type levels but correction of heteroduplex is normal. In a mlh2 mutant, crossing-over is normal and postmeiotic segregation is not observed but non-Mendelian segregation is elevated and altered with respect to parity. Finally, to a first approximation, the mlh1 mutant represents the combined single mutant phenotypes. Taken together, these data imply modulation of a basic Mlh1 function via combination with the three other MutL homologs and suggest specifically that Mlh1 combines with Mlh3 to promote meiotic crossing-over.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ob/ob mouse is genetically deficient in leptin and exhibits both an obese and a mild non-insulin-dependent diabetic phenotype. To test the hypothesis that correction of the obese phenotype by leptin gene therapy will lead to the spontaneous correction of the diabetic phenotype, the ob/ob mouse was treated with a recombinant adenovirus expressing the mouse leptin cDNA. Treatment resulted in dramatic reductions in both food intake and body weight, as well as the normalization of serum insulin levels and glucose tolerance. The subsequent diminishment in serum leptin levels resulted in the rapid resumption of food intake and a gradual gain of body weight, which correlated with the gradual return of hyperinsulinemia and insulin resistance. These results not only demonstrated that the obese and diabetic phenotypes in the adult ob/ob mice are corrected by leptin gene treatment but also provide confirming evidence that body weight control may be critical in the long-term management of non-insulin-dependent diabetes mellitus in obese patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many inborn errors of metabolism, early treatment is critical to prevent long-term developmental sequelae. We have used a gene-therapy approach to demonstrate this concept in a murine model of mucopolysaccharidosis type VII (MPS VII). Newborn MPS VII mice received a single intravenous injection with 5.4 × 106 infectious units of recombinant adeno-associated virus encoding the human β-glucuronidase (GUSB) cDNA. Therapeutic levels of GUSB expression were achieved by 1 week of age in liver, heart, lung, spleen, kidney, brain, and retina. GUSB expression persisted in most organs for the 16-week duration of the study at levels sufficient to either reduce or prevent completely lysosomal storage. Of particular significance, neurons, microglia, and meninges of the central nervous system were virtually cleared of disease. In addition, neonatal treatment of MPS VII mice provided access to the central nervous system via an intravenous route, avoiding a more invasive procedure later in life. These data suggest that gene transfer mediated by adeno-associated virus can achieve therapeutically relevant levels of enzyme very early in life and that the rapid growth and differentiation of tissues does not limit long-term expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acidic and basic fibroblast growth factors (FGFs) share a wide range of diverse biological activities. To date, low levels of FGF have not been correlated with a pathophysiologic state. We report that blood vessels of spontaneously hypertensive rats are shown to be associated with a marked decrement in endothelial basic FGF content. This decrement correlates both with hypertension and with a decrease in the endothelial content of nitric oxide synthase. Restoration of FGF to physiological levels in the vascular wall, either by systemic administration or by in vivo gene transfer, significantly augmented the number of endothelial cells with positive immunostaining for nitric oxide synthase, corrected hypertension, and ameliorated endothelial-dependent responses to vasoconstrictors. These results suggest an important role for FGFs in blood pressure homeostasis and open new avenues for the understanding of the etiology and treatment of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palmitoyl-protein thioesterase is a lysosomal long-chain fatty acyl hydrolase that removes fatty acyl groups from modified cysteine residues in proteins. Mutations in palmitoyl-protein thioesterase were recently found to cause the neurodegenerative disorder infantile neuronal ceroid lipofuscinosis, a disease characterized by accumulation of amorphous granular deposits in cortical neurons, leading to blindness, seizures, and brain death by the age of three. In the current study, we demonstrate that [35S]cysteine-labeled lipid thioesters accumulate in immortalized lymphoblasts of patients with infantile neuronal ceroid lipofuscinosis. The accumulation in cultured cells is reversed by the addition of recombinant palmitoyl-protein thioesterase that is competent for lysosomal uptake through the mannose-6-phosphate receptor. The [35S]cysteine-labeled lipids are substrates for palmitoyl-protein thioesterase in vitro, and their formation requires prior protein synthesis. These data support a role for palmitoyl-protein thioesterase in the lysosomal degradation of S-acylated proteins and define a major new pathway for the catabolism of acylated proteins in the lysosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MRL/MP-+/+ (MRL/+) mice develop pancreatitis and sialoadenitis after they reach 7 months of age. Conventional bone marrow transplantation has been found to be ineffective in the treatment of these forms of apparent autoimmune disease. Old MRL/+ mice show a dramatic thymic involution with age. Hematolymphoid reconstitution is incomplete when fetal liver cells (as a source of hemopoietic stem cells) plus fetal bone (FB; which is used to recruit stromal cells) are transplanted from immunologically normal C57BL/6 donor mice to MRL/+ female recipients. Embryonic thymus from allogeneic C57BL/6 donors was therefore engrafted along with either bone marrow or fetal hematopoietic cells (FHCs) plus fragments of adult or fetal bone. More than seventy percent of old MRL/+ mice (> 7 months) that had been given a fetal thymus (FT) transplant plus either bone marrow or FHCs and also bone fragments survived more than 100 days after treatment. The mice that received FHCs, FB, plus FT from allogeneic donors developed normal T cell and B cell functions. Serum amylase levels decreased in these mice whereas they increased in the mice that received FHCs and FB but not FT. The pancreatitis and sialoadenitis already present at the time of transplantations were fully corrected according to histological analysis by transplants of allogeneic FHCs, FB and FT in the MRL/+ mice. These findings are taken as an experimental indication that perhaps stem cell transplants along with FT grafts might represent a useful strategy for treatment of autoimmune diseases in aged humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabry disease is an X-linked metabolic disorder due to a deficiency of alpha-galactosidase A (alpha-gal A; EC 3.2.1.22). Patients accumulate glycosphingolipids with terminal alpha-galactosyl residues that come from intracellular synthesis, circulating metabolites, or from the biodegradation Of senescent cells. Patients eventually succumb to renal, cardio-, or cerebrovascular disease. No specific therapy exists. One possible approach to ameliorating this disorder is to target corrective gene transfer therapy to circulating hematopoietic cells. Toward this end, an amphotropic virus-producer cell line has been developed that produces a high titer (>10(6) i.p. per ml) recombinant retrovirus constructed to transduce and correct target cells. Virus-producer cells also demonstrate expression of large amounts of both intracellular and secreted alpha-gal A. To examine the utility of this therapeutic vector, skin fibroblasts from Fabry patients were corrected for the metabolic defect by infection with this recombinant virus and secreted enzyme was observed. Furthermore, the secreted enzyme was found to be taken up by uncorrected cells in a mannose-6-phosphate receptor-dependent manner. In related experiments, immortalized B cell lines from Fabry patients, created as a hematologic delivery test system, were transduced. As with the fibroblasts, transduced patient B cell lines demonstrated both endogenous enzyme correction and a small amount of secretion together with uptake by uncorrected cells. These studies demonstrate that endogenous metabolic correction in transduced cells, combined with secretion, may provide a continuous source of corrective material in trans to unmodified patient bystander cells (metabolic cooperativity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperglycemia is a common feature of diabetes mellitus. It results from a decrease in glucose utilization by the liver and peripheral tissues and an increase in hepatic glucose production. Glucose phosphorylation by glucokinase is an initial event in glucose metabolism by the liver. However, glucokinase gene expression is very low in diabetic animals. Transgenic mice expressing the P-enolpyruvate carboxykinase/glucokinase chimeric gene were generated to study whether the return of the expression of glucokinase in the liver of diabetic mice might prevent metabolic alterations. In contrast to nontransgenic mice treated with streptozotocin, mice with the transgene previously treated with streptozotocin showed high levels of both glucokinase mRNA and its enzyme activity in the liver, which were associated with an increase in intracellular levels of glucose 6-phosphate and glycogen. The liver of these mice also showed an increase in pyruvate kinase activity and lactate production. Furthermore, normalization of both the expression of genes involved in gluconeogenesis and ketogenesis in the liver and the production of glucose and ketone body by hepatocytes in primary culture were observed in streptozotocin-treated transgenic mice. Thus, glycolysis was induced while gluconeogenesis and ketogenesis were blocked in the liver of diabetic mice expressing glucokinase. This was associated with normalization of blood glucose, ketone bodies, triglycerides, and free fatty acids even in the absence of insulin. These results suggest that the expression of glucokinase during diabetes might be a new approach to the normalization of hyperglycemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allogeneic bone marrow transplantation is the most effective treatment for Hurler syndrome but, since this therapy is not available to all patients, we have considered an alternative approach based on transfer and expression of the normal gene in autologous bone marrow. A retroviral vector carrying the full-length cDNA for alpha-L-iduronidase has been constructed and used to transduce bone marrow from patients with this disorder. Various gene-transfer protocols have been assessed including the effect of intensive schedules of exposure of bone marrow to viral supernatant and the influence of growth factors. With these protocols, we have demonstrated successful gene transfer into primitive CD34+ cells and subsequent enzyme expression in their maturing progeny. Also, by using long-term bone marrow cultures, we have demonstrated high levels of enzyme expression sustained for several months. The efficiency of gene transfer has been assessed by PCR analysis of hemopoietic colonies as 25-56%. No advantage has been demonstrated for the addition of growth factors or intensive viral exposure schedules. The enzyme is secreted into the medium and functional localization has been demonstrated by reversal of the phenotypic effects of lysosomal storage in macrophages. This work suggests that retroviral gene transfer into human bone marrow may offer the prospect for gene therapy of Hurler syndrome in young patients without a matched sibling donor.