6 resultados para Copper nitrite reductase
em National Center for Biotechnology Information - NCBI
Resumo:
Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.
Resumo:
The effect of low temperature on cell growth, photosynthesis, photoinhibition, and nitrate assimilation was examined in the cyanobacterium Synechococcus sp. PCC 6301 to determine the factor that limits growth. Synechococcus sp. PCC 6301 grew exponentially between 20°C and 38°C, the growth rate decreased with decreasing temperature, and growth ceased at 15°C. The rate of photosynthetic oxygen evolution decreased more slowly with temperature than the growth rate, and more than 20% of the activity at 38°C remained at 15°C. Oxygen evolution was rapidly inactivated at high light intensity (3 mE m−2 s−1) at 15°C. Little or no loss of oxygen evolution was observed under the normal light intensity (250 μE m−2 s−1) for growth at 15°C. The decrease in the rate of nitrate consumption by cells as a function of temperature was similar to the decrease in the growth rate. Cells could not actively take up nitrate or nitrite at 15°C, although nitrate reductase and nitrite reductase were still active. These data demonstrate that growth at low temperature is not limited by a decrease in the rate of photosynthetic electron transport or by photoinhibition, but that inactivation of the nitrate/nitrite transporter limits growth at low temperature.
Resumo:
An NADPH-dependent NO2−-reducing system was reconstituted in vitro using ferredoxin (Fd) NADP+ oxidoreductase (FNR), Fd, and nitrite reductase (NiR) from the green alga Chlamydomonas reinhardtii. NO2− reduction was dependent on all protein components and was operated under either aerobic or anaerobic conditions. NO2− reduction by this in vitro pathway was inhibited up to 63% by 1 mm NADP+. NADP+ did not affect either methyl viologen-NiR or Fd-NiR activity, indicating that inhibition was mediated through FNR. When NADPH was replaced with a glucose-6-phosphate dehydrogenase (G6PDH)-dependent NADPH-generating system, rates of NO2− reduction reached approximately 10 times that of the NADPH-dependent system. G6PDH could be replaced by either 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase, indicating that G6PDH functioned to: (a) regenerate NADPH to support NO2− reduction and (b) consume NADP+, releasing FNR from NADP+ inhibition. These results demonstrate the ability of FNR to facilitate the transfer of reducing power from NADPH to Fd in the direction opposite to that which occurs in photosynthesis. The rate of G6PDH-dependent NO2− reduction observed in vitro is capable of accounting for the observed rates of dark NO3− assimilation by C. reinhardtii.
Resumo:
Nitrous oxide (N2O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N2O flux was monitored simultaneously with photosynthetic CO2 and O2 exchanges from intact canopies of 12 wheat seedlings. The rates of N2O-N emitted ranged from <2 pmol⋅m−2⋅s−1 when NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} was the N source, to 25.6 ± 1.7 pmol⋅m−2⋅s−1 (mean ± SE, n = 13) when the N source was shifted to NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N2O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO2 assimilated to O2 evolved. 15N isotopic signatures on N2O emitted from leaves supported direct N2O production by plant NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilation and not N2O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N2O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N2O produced by leaves occurred during photoassimilation of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} in the chloroplast. Given the large quantities of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N2O during NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} photoassimilation could be an important global biogenic N2O source.
Resumo:
Copper-zinc superoxide dismutase (Cu,ZnSOD) is the antioxidant enzyme that catalyzes the dismutation of superoxide (O2•−) to O2 and H2O2. In addition, Cu,ZnSOD also exhibits peroxidase activity in the presence of H2O2, leading to self-inactivation and formation of a potent enzyme-bound oxidant. We report in this study that lipid peroxidation of l-α-lecithin liposomes was enhanced greatly during the SOD/H2O2 reaction in the presence of nitrite anion (NO2−) with or without the metal ion chelator, diethylenetriaminepentacetic acid. The presence of NO2− also greatly enhanced α-tocopherol (α-TH) oxidation by SOD/H2O2 in saturated 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine liposomes. The major product identified by HPLC and UV-studies was α-tocopheryl quinone. When 1,2-diauroyl-sn-glycero-3-phosphatidylcholine liposomes containing γ-tocopherol (γ-TH) were incubated with SOD/H2O2/NO2−, the major product identified was 5-NO2-γ-TH. Nitrone spin traps significantly inhibited the formation of α-tocopheryl quinone and 5-NO2-γ-TH. NO2− inhibited H2O2-dependent inactivation of SOD. A proposed mechanism of this protection involves the oxidation of NO2− by an SOD-bound oxidant to the nitrogen dioxide radical (•NO2). In this study, we have shown a new mechanism of nitration catalyzed by the peroxidase activity of SOD. We conclude that NO2− is a suitable probe for investigating the peroxidase activity of familial Amyotrophic Lateral Sclerosis-linked SOD mutants.
Resumo:
We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba3 and caa3) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) under reducing anaerobic conditions. The rate of NO consumption and N2O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba3 × min and 32 ± 8 mol NO/mol caa3 × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba3 oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar CuB+ coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb3 terminal oxidases. Our findings represent functional evidence in support of this hypothesis.