3 resultados para Control architecture
em National Center for Biotechnology Information - NCBI
Resumo:
Electron microscopy of human skin fibroblasts syringe-loaded with human immunodeficiency virus type 1 protease (HIV-1 PR) revealed several effects on nuclear architecture. The most dramatic is a change from a spherical nuclear morphology to one with multiple lobes or deep invaginations. The nuclear matrix collapses or remains only as a peripheral rudiment, with individual elements thicker than in control cells. Chromatin organization and distribution is also perturbed. Attempts to identify a major nuclear protein whose cleavage by the protease might be responsible for these alterations were unsuccessful. Similar changes were observed in SW 13 T3 M [vimentin+] cells, whereas no changes were observed in SW 13 [vimentin−] cells after microinjection of protease. Treatment of SW 13 [vimentin−] cells, preinjected with vimentin to establish an intermediate filament network, with HIV-1 PR resulted in alterations in chromatin staining and distribution, but not in nuclear shape. These same changes were produced in SW 13 [vimentin−] cells after the injection of a mixture of vimentin peptides, produced by the cleavage of vimentin to completion by HIV-1 PR in vitro. Similar experiments with 16 purified peptides derived from wild-type or mutant vimentin proteins and five synthetic peptides demonstrated that exclusively N-terminal peptides were capable of altering chromatin distribution. Furthermore, two separate regions of the N-terminal head domain are primarily responsible for perturbing nuclear architecture. The ability of HIV-1 to affect nuclear organization via the liberation of vimentin peptides may play an important role in HIV-1-associated cytopathogenesis and carcinogenesis.
Resumo:
The general transcription initiation factor TFIID was originally identified, purified, and characterized with a biochemical assay in which accurate transcription initiation is reconstituted with multiple, chromatographically separable activities. Biochemical analyses have demonstrated that TFIID is a multiprotein complex that directs preinitiation complex assembly on both TATA box-containing and TATA-less promoters, and some TFIID subunits have been shown to be molecular targets for activation domains in DNA-binding regulatory proteins. These findings have most commonly been interpreted to support the view that transcriptional activation by upstream factors is the result of enhanced TFIID recruitment to the core promoter. Recent insights into the architecture and cell-cycle regulation of the multiprotein TFIID complex prompt both a reassessment of the functional role of TFIID in gene activation and a review of some of the less well-appreciated literature on TFIID. We present a speculative model for diverse functional roles of TFIID in the cell, explore the merits of the model in the context of published data, and suggest experimental approaches to resolve unanswered questions. Finally, we point out how the proposed functional roles of TFIID in eukaryotic class II transcription fit into a model for promoter recognition and activation that applies to both eubacteria and eukaryotes.
Resumo:
We analyzed the process of inflorescence formation in Impatiens balsamina by studying the architecture of the plant under different photoperiod treatments. Floral reversion under noninductive conditions in this species is caused by the lack of persistence of the induced state in the leaf. This can be used to control the amount of inductive signal and to examine its quantitative influence on morphological changes in the plant. The floral transition was characterized by a continuum of variation at the level of meristem identity, primordium initiation, and floral organ identity. This continuum was enhanced during reversion, suggesting that the establishment of a continuum partly reflects limiting amounts of inductive signal exported from the leaf to the meristem. The transcription patterns of two homologs of genes involved in the control of floral meristem identity, Imp-FLO and Imp-FIM, were similar in terminal and axillary flowers and may be associated with the continuum exhibited by I. balsamina. By analyzing the fate of axillary meristem primordia initiated before and after the beginning of the inductive period, we showed that de novo initiation of axillary meristem primordia by the evoked meristem is not required and that primordia initiated before evocation can adopt different fates, depending on the amount of inductive signal. The influence of age and/or position on primordium responsiveness to the inductive signal is discussed.