3 resultados para Continental shelf sequences
em National Center for Biotechnology Information - NCBI
Resumo:
Marine diatoms require dissolved silicate to form an external shell, and their growth becomes Si-limited when the atomic ratio of silicate to dissolved inorganic nitrogen (Si:DIN) approaches 1:1, also known as the “Redfield ratio.” Fundamental changes in the diatom-to-zooplankton-to-higher trophic level food web should occur when this ratio falls below 1:1 and the proportion of diatoms in the phytoplankton community is reduced. We quantitatively substantiate these predictions by using a variety of data from the Mississippi River continental shelf, a system in which the Si:DIN loading ratio has declined from around 3:1 to 1:1 during this century because of land-use practices in the watershed. We suggest that, on this shelf, when the Si:DIN ratio in the river decreases to less than 1:1, then (i) copepod abundance changes from >75% to <30% of the total mesozooplankton, (ii) zooplankton fecal pellets become a minor component of the in situ primary production consumed, and (iii) bottom-water oxygen consumption rates become less dependent on relatively fast-sinking (diatom-rich) organic matter packaged mostly as zooplankton fecal pellets. This coastal ecosystem appears to be a pelagic food web dynamically poised to be either a food web composed of diatoms and copepods or one with potentially disruptive harmful algal blooms. The system is directed between these two ecosystem states by Mississippi River water quality, which is determined by land-use practices far inland.
Resumo:
Insight into the dependence of benthic communities on biological and physical processes in nearshore pelagic environments, long considered a “black box,” has eluded ecologists. In rocky intertidal communities at Oregon coastal sites 80 km apart, differences in abundance of sessile invertebrates, herbivores, carnivores, and macrophytes in the low zone were not readily explained by local scale differences in hydrodynamic or physical conditions (wave forces, surge flow, or air temperature during low tide). Field experiments employing predator and herbivore manipulations and prey transplants suggested top-down (predation, grazing) processes varied positively with bottom-up processes (growth of filter-feeders, prey recruitment), but the basis for these differences was unknown. Shore-based sampling revealed that between-site differences were associated with nearshore oceanographic conditions, including phytoplankton concentration and productivity, particulates, and water temperature during upwelling. Further, samples taken at 19 sites along 380 km of coastline suggested that the differences documented between two sites reflect broader scale gradients of phytoplankton concentration. Among several alternative explanations, a coastal hydrodynamics hypothesis, reflecting mesoscale (tens to hundreds of kilometers) variation in the interaction between offshore currents and winds and continental shelf bathymetry, was inferred to be the primary underlying cause. Satellite imagery and offshore chlorophyll-a samples are consistent with the postulated mechanism. Our results suggest that benthic community dynamics can be coupled to pelagic ecosystems by both trophic and transport linkages.
Resumo:
Humans transformed Western Atlantic coastal marine ecosystems before modern ecological investigations began. Paleoecological, archeological, and historical reconstructions demonstrate incredible losses of large vertebrates and oysters from the entire Atlantic coast. Untold millions of large fishes, sharks, sea turtles, and manatees were removed from the Caribbean in the 17th to 19th centuries. Recent collapses of reef corals and seagrasses are due ultimately to losses of these large consumers as much as to more recent changes in climate, eutrophication, or outbreaks of disease. Overfishing in the 19th century reduced vast beds of oysters in Chesapeake Bay and other estuaries to a few percent of pristine abundances and promoted eutrophication. Mechanized harvesting of bottom fishes like cod set off a series of trophic cascades that eliminated kelp forests and then brought them back again as fishers fished their way down food webs to small invertebrates. Lastly, but most pervasively, mechanized harvesting of the entire continental shelf decimated large, long-lived fishes and destroyed three-dimensional habitats built up by sessile corals, bryozoans, and sponges. The universal pattern of losses demonstrates that no coastal ecosystem is pristine and few wild fisheries are sustainable along the entire Western Atlantic coast. Reconstructions of ecosystems lost only a century or two ago demonstrate attainable goals of establishing large and effective marine reserves if society is willing to pay the costs. Historical reconstructions provide a new scientific framework for manipulative experiments at the ecosystem scale to explore the feasibility and benefits of protection of our living coastal resources.