3 resultados para Contact Forms
em National Center for Biotechnology Information - NCBI
Resumo:
NtrC (nitrogen regulatory protein C) is a bacterial enhancer-binding protein of 469 residues that activates transcription by σ54-holoenzyme. A region of its transcriptional activation (central) domain that is highly conserved among homologous activators of σ54-holoenzyme—residues 206–220—is essential for interaction with this RNA polymerase: it is required for contact with the polymerase and/or for coupling the energy from ATP hydrolysis to a change in the conformation of the polymerase that allows it to form transcriptionally productive open complexes. Several mutant NtrC proteins with amino acid substitutions in this region, including NtrCA216V and NtrCG219K, have normal ATPase activity but fail in transcriptional activation. We now report that other mutant forms carrying amino acid substitutions at these same positions, NtrCA216C and NtrCG219C, are capable of activating transcription when they are not bound to a DNA template (non-DNA-binding derivatives with an altered helix–turn–helix DNA-binding motif at the C terminus of the protein) but are unable to do so when they are bound to a DNA template, whether or not it carries a specific enhancer. Enhancer DNA remains a positive allosteric effector of ATP hydrolysis, as it is for wild-type NtrC but, surprisingly, appears to have become a negative allosteric effector for some aspect of interaction with σ54-holoenzyme. The conserved region in which these amino acid substitutions occur (206–220) is equivalent to the Switch I region of a large group of purine nucleotide-binding proteins. Interesting analogies can be drawn between the Switch I region of NtrC and that of p21ras.
Resumo:
Interferon γ (IFN-γ) induces rapid tyrosine phosphorylation of the latent cytoplasmic transcription factor, Stat1, which then forms homodimers, translocates to the nucleus and participates in IFN-γ-induced transcription. However, little is known of the interactions between Stat1 and the general transcription machinery during transcriptional activation. We show here that Stat1 can directly interact with the CREB-binding protein (CBP)/p300 family of transcriptional coactivators. Specifically, two interaction regions were identified: the amino-terminal region of Stat1 interacts with the CREB-binding domain of CBP/p300 and the carboxyl-terminal region of Stat1 interacts with the domain of CBP/p300 that binds adenovirus E1A protein. Transfection experiments suggest a role for these interactions in IFN-γ-induced transcription. Because CBP/p300-binding is required for the adenovirus E1A protein to regulate transcription of many genes during viral replication and cellular transformation, it is possible that the anti-viral effect of IFN-γ is based at least in part on direct competition by nuclear Stat1 with E1A for CBP/p300 binding.
Resumo:
Pathogenic strains of Helicobacter pylori secrete a cytotoxin, VacA, that in the presence of weak bases, causes osmotic swelling of acidic intracellular compartments enriched in markers for late endosomes and lysosomes. The molecular mechanisms by which VacA causes this vacuolation remain largely unknown. At neutral pH, VacA is predominantly a water-soluble dodecamer formed by two apposing hexamers. In this report, we show by using atomic force microscopy that below pH ≈5, VacA associates with anionic lipid bilayers to form hexameric membrane-associated complexes. We propose that water-soluble dodecameric VacA proteins disassemble at low pH and reassemble into membrane-spanning hexamers. The surface contour of the membrane-bound hexamer is strikingly similar to the outer surface of the soluble dodecamer, suggesting that the VacA surface in contact with the membrane is buried within the dodecamer before protonation. In addition, electrophysiological measurements indicate that, under the conditions determined by atomic force microscopy for membrane association, VacA forms pores across planar lipid bilayers. This low pH-triggered pore formation is likely a critical step in VacA activity.