8 resultados para Conservation of forests and aquatic ecosystems

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pufferfish Fugu rubripes has a genome ≈7.5 times smaller than that of mammals but with a similar number of genes. Although conserved synteny has been demonstrated between pufferfish and mammals across some regions of the genome, there is some controversy as to what extent Fugu will be a useful model for the human genome, e.g., [Gilley, J., Armes, N. & Fried, M. (1997) Nature (London) 385, 305–306]. We report extensive conservation of synteny between a 1.5-Mb region of human chromosome 11 and <100 kb of the Fugu genome in three overlapping cosmids. Our findings support the idea that the majority of DNA in the region of human chromosome 11p13 is intergenic. Comparative analysis of three unrelated genes with quite different roles, WT1, RCN1, and PAX6, has revealed differences in their structural evolution. Whereas the human WT1 gene can generate 16 protein isoforms via a combination of alternative splicing, RNA editing, and alternative start site usage, our data predict that Fugu WT1 is capable of generating only two isoforms. This raises the question of the extent to which the evolution of WT1 isoforms is related to the evolution of the mammalian genitourinary system. In addition, this region of the Fugu genome shows a much greater overall compaction than usual but with significant noncoding homology observed at the PAX6 locus, implying that comparative genomics has identified regulatory elements associated with this gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have asked whether comparative genome analysis and rat transgenesis can be used to identify functional regulatory domains in the gene locus encoding the hypothalamic neuropeptides oxytocin (OT) and vasopressin. Isotocin (IT) and vasotocin (VT) are the teleost homologues of these genes. A contiguous stretch of 46 kb spanning the Fugu IT-VT locus has been sequenced, and nine putative genes were found. Unlike the OT and vasopressin genes, which are closely linked in the mammalian genome in a tail-to-tail orientation, Fugu IT and VT genes are linked head to tail and are separated by five genes. When a cosmid containing the Fugu IT-VT locus was introduced into the rat genome, we found that the Fugu IT gene was specifically expressed in rat hypothalamic oxytocinergic neurons and mimicked the response of the endogenous OT gene to an osmotic stimulus. These data show that cis-acting elements and trans-acting factors mediating the cell-specific and physiological regulation of the OT and IT genes are conserved between mammals and fish. The combination of Fugu genome analysis and transgenesis in a mammal is a powerful tool for identifying and analyzing conserved vertebrate regulatory elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Drosophila apterous (ap) gene encodes a protein of the LIM-homeodomain family. Many transcription factors of this class have been conserved during evolution; however, the functional significance of their structural conservation is generally not known. ap is best known for its fundamental role as a dorsal selector gene required for patterning and growth of the wing, but it also has other important functions required for neuronal fasciculation, fertility, and normal viability. We isolated mouse (mLhx2) and human (hLhx2) ap orthologs, and we used transgenic animals and rescue assays to investigate the conservation of the Ap protein during evolution. We found that the human protein LHX2 is able to regulate correctly ap target genes in the fly, causes the same phenotypes as Ap when ectopically produced, and most importantly rescues ap mutant phenotypes as efficiently as the fly protein. In addition, we found striking similarities in the expression patterns of the Drosophila and murine genes. Both mLhx2 and ap are expressed in the respective nerve cords, eyes, olfactory organs, brain, and limbs. These results demonstrate the conservation of Ap protein function across phyla and argue that aspects of its expression pattern have also been conserved from a common ancestor of insects and vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome of the pufferfish (Fugu rubripes) (400 Mb) is approximately 7.5 times smaller than the human genome, but it has a similar gene repertoire to that of man. If regions of the two genomes exhibited conservation of gene order (i.e., were syntenic), it should be possible to reduce dramatically the effort required for identification of candidate genes in human disease loci by sequencing syntenic regions of the compact Fugu genome. We have demonstrated that three genes (dihydrolipoamide succinyltransferase, S31iii125, and S20i15), which are linked to FOS in the familial Alzheimer disease focus (AD3) on human chromosome 14, have homologues in the Fugu genome adjacent to Fugu cFOS. The relative gene order of cFOS, S31iii125, and S20i15 was the same in both genomes, but in Fugu these three genes lay within a 12.4-kb region, compared to >600 kb in the human AD3 locus. These results demonstrate the conservation of synteny between the genomes of Fugu and man and highlight the utility of this approach for sequence-based identification of genes in human disease loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human transcription initiation factor TFIID is composed of the TATA-binding polypeptide (TBP) and at least 13 TBP-associated factors (TAFs) that collectively or individually are involved in activator-dependent transcription. To investigate protein-protein interactions involved in TFIID assembly and in TAF-mediated activator functions, we have cloned and expressed cDNAs encoding human TAFII80 and TAFII31. Coimmunoprecipitation assays showed that TAFII80 interacted with TAFII250, TAFII31, TAFII20, and TBP, but not with TAFII55. Similar assays showed that TAFII80 interacted with TFIIE alpha and with TFIIF alpha (RAP74) but not with TFIIB, TFIIE beta, or TFIIF beta (RAP30). Further studies with TAFII80 mutations revealed three distinct interaction domains which fall within regions conserved in human TAFII80, Drosophila TAFII60, and yeast TAFII60. The N terminus of TAFII80 (residues 1-100) interacts with both TAFII31 and TAFII20, while two C-terminal regions are involved, respectively, in interactions with TAFII250 and TFIIF alpha (RAP74) (residues 203-276) and with TBP and TFIIE alpha (residues 377-505). The interactions between TAFII80 and general factors TFIIE alpha and TFIIF alpha (RAP74) could be important for recruitment of GTFs during activator-dependent transcription. Because TAFs 80, 31, and 20 show sequence similarities to histones H4, H3, and H2B, as well as some parallel interactions, this subset of TAFs may form a related core structure within TFIID.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.