2 resultados para Conjugate gradient methods
em National Center for Biotechnology Information - NCBI
Resumo:
Sequence-specific recognition of DNA can be achieved by triple helix-forming oligonucleotides that bind to the major groove of double-helical DNA. These oligonucleotides have been used as sequence-specific DNA ligands for various purposes, including sequence-specific gene regulation in the so-called ‘antigene strategy’. In particular, (G,A)-containing oligonucleotides can form stable triple helices under physiological conditions. However, triplex formation may be in competition with self-association of these oligonucleotides. For biological applications it would be interesting to identify the conditions under which one structure is favoured as compared to the other(s). Here we have directly studied competition between formation of a parallel (G,A) homoduplex and that of a triple helix by a 13 nt (G,A)-containing oligonucleotide. Temperature gradient gel electrophoresis allows simultaneous detection of competition between the two structures, because of their different temperature dependencies and gel electrophoretic mobilities, and characterisation of this competition.
Resumo:
A covalently linked protein–protein conjugate between ThiF and ThiS thiocarboxylate was found in a partially purified coexpressed ThiF/ThiS protein mixture by using Fourier transform mass spectrometry. The Cys-184 of ThiF and the C terminus of ThiS thiocarboxylate were identified to be involved in the formation of this complex by using both mutagenesis and chemical modification methods. A complementation study of Escherichia coli thiF− using thiF(C184S) suggests that this conjugate is an essential intermediate involved in the biosynthesis of the thiazole moiety of thiamin. This ThiF/ThiS conjugate is the first characterized example of a unique acyldisulfide intermediate in a biosynthetic system. This protein conjugate is also an example of an ubiquitin-E1 like protein–protein conjugate in prokaryotes and supports a strong evolutionary link between thiamin biosynthesis and the ubiquitin conjugating system.