2 resultados para Complex problems

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central problem of complex inheritance is to map oligogenes for disease susceptibility, integrating linkage and association over samples that differ in several ways. Combination of evidence over multiple samples with 1,037 families supports loci contributing to asthma susceptibility in the cytokine region on 5q [maximum logarithm of odds (lod) = 2.61 near IL-4], but no evidence for atopy. The principal problems with retrospective collaboration on linkage appear to have been solved, providing far more information than a single study. A multipoint lod table evaluated at commonly agreed reference loci is required for both collaboration and metaanalysis, but variations in ascertainment, pedigree structure, phenotype definition, and marker selection are tolerated. These methods are invariant with statistical methods that increase the power of lods and are applicable to all diseases, motivating collaboration rather than competition. In contrast to linkage, positional cloning by allelic association has yet to be extended to multiple samples, a prerequisite for efficient combination with linkage and the greatest current challenge to genetic epidemiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. The resulting "knockout" mice have confirmed some hypotheses, have upset others, but have rarely been uninformative. Models of several human genetic diseases have been produced by targeting--including Gaucher disease, cystic fibrosis, and the fragile X syndrome. These diseases are primarily determined by defects in single genes, and their modes of inheritance are well understood. When the disease under study has a complex etiology with multiple genetic and environmental components, the generation of animal models becomes more difficult but no less valuable. The problems associated with dissecting out the individual genetic factors also increases substantially and the distinction between causation and correlation is often difficult. To prove causation in a complex system requires rigorous adherence to the principle that the experiments must allow detection of the effects of changing only a single variable at one time. Gene targeting experiments, when properly designed, can test the effects of a precise genetic change completely free from the effects of differences in any other genes (linked or unlinked to the test gene). They therefore allow proofs of causation.