27 resultados para Compact Circular Polarization
em National Center for Biotechnology Information - NCBI
Resumo:
Is the pathway of protein folding determined by the relative stability of folding intermediates, or by the relative height of the activation barriers leading to these intermediates? This is a fundamental question for resolving the Levinthal paradox, which stated that protein folding by a random search mechanism would require a time too long to be plausible. To answer this question, we have studied the guanidinium chloride (GdmCl)-induced folding/unfolding of staphylococcal nuclease [(SNase, formerly EC 3.1.4.7; now called microbial nuclease or endonuclease, EC 3.1.31.1] by stopped-flow circular dichroism (CD) and differential scanning microcalorimetry (DSC). The data show that while the equilibrium transition is a quasi-two-state process, kinetics in the 2-ms to 500-s time range are triphasic. Data support the sequential mechanism for SNase folding: U3 <--> U2 <--> U1 <--> N0, where U1, U2, and U3 are substates of the unfolded protein and N0 is the native state. Analysis of the relative population of the U1, U2, and U3 species in 2.0 M GdmCl gives delta-G values for the U3 --> U2 reaction of +0.1 kcal/mol and for the U2 --> U1 reaction of -0.49 kcal/mol. The delta-G value for the U1 --> N0 reaction is calculated to be -4.5 kcal/mol from DSC data. The activation energy, enthalpy, and entropy for each kinetic step are also determined. These results allow us to make the following four conclusions. (i) Although the U1, U2, and U3 states are nearly isoenergetic, no random walk occurs among them during the folding. The pathway of folding is unique and sequential. In other words, the relative stability of the folding intermediates does not dictate the folding pathway. Instead, the folding is a descent toward the global free-energy minimum of the native state via the least activation path in the vast energy landscape. Barrier avoidance leads the way, and barrier height limits the rate. Thus, the Levinthal paradox is not applicable to the protein-folding problem. (ii) The main folding reaction (U1 --> N0), in which the peptide chain acquires most of its free energy (via van der Waals' contacts, hydrogen bonding, and electrostatic interactions), is a highly concerted process. These energy-acquiring events take place in a single kinetic phase. (iii) U1 appears to be a compact unfolded species; the rate of conversion of U2 to U1 depends on the viscosity of solution. (iv) All four relaxation times reported here depend on GdmCl concentrations: it is likely that none involve the cis/trans isomerization of prolines. Finally, a mechanism is presented in which formation of sheet-like chain conformations and a hydrophobic condensation event precede the main-chain folding reaction.
Resumo:
High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions.
Resumo:
The compact steep-spectrum sources (CSSs) are an interesting class of objects which are of subgalactic dimensions; they occur more frequently in high-frequency surveys because their spectra often turn over at lower frequencies. We have estimated the symmetry parameters of a well-defined sample of CSSs and compared these with the larger 3CR sources of similar luminosity to understand the evolution and the consistency of CSSs with the unified scheme. We suggest that the majority of CSSs are likely to be young sources advancing outward through an asymmetric, inhomogeneous environment to form the larger ones. The radio properties of the CSSs are consistent with the unified scheme, where the axes of the quasars are seen closer to the line of sight while the radio galaxies lie closer to the plane of the sky. We discuss how radio polarization observations may be used to probe whether the physical conditions in the central regions of the CSSs are different from the larger ones. We present a simple scenario where the depolarization and high rotation measures seen in many CSSs can be consistent with the low rotation measures of cores in the more extended quasars and suggest further observations to test this scenario.
Resumo:
This paper deals with pattern recognition of the shape of the boundary of closed figures on the basis of a circular sequence of measurements taken on the boundary at equal intervals of a suitably chosen argument with an arbitrary starting point. A distance measure between two boundaries is defined in such a way that it has zero value when the associated sequences of measurements coincide by shifting the starting point of one of the sequences. Such a distance measure, which is invariant to the starting point of the sequence of measurements, is used in identification or discrimination by the shape of the boundary of a closed figure. The mean shape of a given set of closed figures is defined, and tests of significance of differences in mean shape between populations are proposed.
Resumo:
Two variables define the topological state of closed double-stranded DNA: the knot type, K, and ΔLk, the linking number difference from relaxed DNA. The equilibrium distribution of probabilities of these states, P(ΔLk, K), is related to two conditional distributions: P(ΔLk|K), the distribution of ΔLk for a particular K, and P(K|ΔLk) and also to two simple distributions: P(ΔLk), the distribution of ΔLk irrespective of K, and P(K). We explored the relationships between these distributions. P(ΔLk, K), P(ΔLk), and P(K|ΔLk) were calculated from the simulated distributions of P(ΔLk|K) and of P(K). The calculated distributions agreed with previous experimental and theoretical results and greatly advanced on them. Our major focus was on P(K|ΔLk), the distribution of knot types for a particular value of ΔLk, which had not been evaluated previously. We found that unknotted circular DNA is not the most probable state beyond small values of ΔLk. Highly chiral knotted DNA has a lower free energy because it has less torsional deformation. Surprisingly, even at |ΔLk| > 12, only one or two knot types dominate the P(K|ΔLk) distribution despite the huge number of knots of comparable complexity. A large fraction of the knots found belong to the small family of torus knots. The relationship between supercoiling and knotting in vivo is discussed.
Resumo:
We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure.
Resumo:
Vibrio cholerae, the etiologic agent of the diarrheal disease cholera, is a Gram-negative bacterium that belongs to the γ subdivision of the family Proteobacteriaceae. The physical map of the genome has been reported, and the genome has been described as a single 3.2-Mb chromosome [Majumder, R., et al. (1996) J. Bacteriol. 178, 1105–1112]. By using pulsed-field gel electrophoresis of genomic DNA immobilized in agarose plugs and digested with the restriction enzymes I-CeuI, SfiI, and NotI, we have also constructed the physical map of V. cholerae. Our analysis estimates the size of the genome at 4.0 Mb, 25% larger than the physical map reported by others. Our most notable finding is, however, that the V. cholerae chromosome appears to be not the single chromosome reported but two unique and separate circular megareplicons.
Resumo:
The proper localization of resident membrane proteins to the trans-Golgi network (TGN) involves mechanisms for both TGN retention and retrieval from post-TGN compartments. In this study we report identification of a new gene, GRD20, involved in protein sorting in the TGN/endosomal system of Saccharomyces cerevisiae. A strain carrying a transposon insertion allele of GRD20 exhibited rapid vacuolar degradation of the resident TGN endoprotease Kex2p and aberrantly secreted ∼50% of the soluble vacuolar hydrolase carboxypeptidase Y. The Kex2p mislocalization and carboxypeptidase Y missorting phenotypes were exhibited rapidly after loss of Grd20p function in grd20 temperature-sensitive mutant strains, indicating that Grd20p plays a direct role in these processes. Surprisingly, little if any vacuolar degradation was observed for the TGN membrane proteins A-ALP and Vps10p, underscoring a difference in trafficking patterns for these proteins compared with that of Kex2p. A grd20 null mutant strain exhibited extremely slow growth and a defect in polarization of the actin cytoskeleton, and these two phenotypes were invariably linked in a collection of randomly mutagenized grd20 alleles. GRD20 encodes a hydrophilic protein that partially associates with the TGN. The discovery of GRD20 suggests a link between the cytoskeleton and function of the yeast TGN.
Resumo:
Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these “cells within cells” lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph, which has three minute linear chromosomes, but their function and the nature of their ends have been unclear. We report extensive cryptomonad nucleomorph sequences (68.5 kb), from one end of each of the three chromosomes of Guillardia theta. Telomeres of the nucleomorph chromosomes differ dramatically from those of other eukaryotes, being repeats of the 23-mer sequence (AG)7AAG6A, not a typical hexamer (commonly TTAGGG). The subterminal regions comprising the rRNA cistrons and one protein-coding gene are exactly repeated at all three chromosome ends. Gene density (one per 0.8 kb) is the highest for any cellular genome. None of the 38 protein-coding genes has spliceosomal introns, in marked contrast to the chlorarachniophyte nucleomorph. Most identified nucleomorph genes are for gene expression or protein degradation; histone, tubulin, and putatively centrosomal ranbpm genes are probably important for chromosome segregation. No genes for primary or secondary metabolism have been found. Two of the three tRNA genes have introns, one in a hitherto undescribed location. Intergenic regions are exceptionally short; three genes transcribed by two different RNA polymerases overlap their neighbors. The reported sequences encode two essential chloroplast proteins, FtsZ and rubredoxin, thus explaining why cryptomonad nucleomorphs persist.
Resumo:
Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.
Resumo:
Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form α-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the α-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis.
Resumo:
The importance of cation->aromatic polarization effects on cation-π interactions has been explored. Theoretical calculations demonstrate that polarization is a large contribution to cation-aromatic interactions, and particularly to cation-π interactions. For a series of compounds with a similar aromatic core, polarization is constant and makes small influence in the relative cation-binding energies. However, when the aromatic core changes polarization contributions might be very different. We found that the generalized molecular interaction potential with polarization is a very fast and powerful tool for the prediction of cation binding of aromatic compounds.
Resumo:
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.
Resumo:
BAliBASE is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The database contains high quality, manually constructed multiple sequence alignments together with detailed annotations. The alignments are all based on three-dimensional structural superpositions, with the exception of the transmembrane sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Here we describe version 2.0 of the database, which incorporates three new reference sets of alignments containing structural repeats, transmembrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences. BAliBASE can be viewed at the web site http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE2/index.html or can be downloaded from ftp://ftp-igbmc.u-strasbg.fr/pub/BAliBASE2/.
Resumo:
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an α- and β-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin–mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and β1-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase β1-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin–mediated cell-cell adhesion requires the Na,K-ATPase β-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the β1-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.