3 resultados para Communication model
em National Center for Biotechnology Information - NCBI
Resumo:
A cell’s ability to effectively communicate with a neighboring cell is essential for tissue function and ultimately for the organism to which it belongs. One important mode of intercellular communication is the release of soluble cyto- and chemokines. Once secreted, these signaling molecules diffuse through the surrounding medium and eventually bind to neighboring cell’s receptors whereby the signal is received. This mode of communication is governed both by physicochemical transport processes and cellular secretion rates, which in turn are determined by genetic and biochemical processes. The characteristics of transport processes have been known for some time, and information on the genetic and biochemical determinants of cellular function is rapidly growing. Simultaneous quantitative analysis of the two is required to systematically evaluate the nature and limitations of intercellular signaling. The present study uses a solitary cell model to estimate effective communication distances over which a single cell can meaningfully propagate a soluble signal. The analysis reveals that: (i) this process is governed by a single, key, dimensionless group that is a ratio of biological parameters and physicochemical determinants; (ii) this ratio has a maximal value; (iii) for realistic values of the parameters contained in this dimensionless group, it is estimated that the domain that a single cell can effectively communicate in is ≈250 μm in size; and (iv) the communication within this domain takes place in 10–30 minutes. These results have fundamental implications for interpretation of organ physiology and for engineering tissue function ex vivo.
Resumo:
Understanding how the brain processes vocal communication sounds is one of the most challenging problems in neuroscience. Our understanding of how the cortex accomplishes this unique task should greatly facilitate our understanding of cortical mechanisms in general. Perception of species-specific communication sounds is an important aspect of the auditory behavior of many animal species and is crucial for their social interactions, reproductive success, and survival. The principles of neural representations of these behaviorally important sounds in the cerebral cortex have direct implications for the neural mechanisms underlying human speech perception. Our progress in this area has been relatively slow, compared with our understanding of other auditory functions such as echolocation and sound localization. This article discusses previous and current studies in this field, with emphasis on nonhuman primates, and proposes a conceptual platform to further our exploration of this frontier. It is argued that the prerequisite condition for understanding cortical mechanisms underlying communication sound perception and production is an appropriate animal model. Three issues are central to this work: (i) neural encoding of statistical structure of communication sounds, (ii) the role of behavioral relevance in shaping cortical representations, and (iii) sensory–motor interactions between vocal production and perception systems.
Resumo:
We present a quantitative experimental demonstration of solvent-mediated communication between noncontacting biopolymers. We show that changes in the activity of a solvent component brought about by a conformational change in one biopolymer can result in changes in the physical properties of a second noncontacting biopolymer present in solution. Specifically, we show that the release of protons on denaturation of a donor polymer (in this case, a four-stranded DNA tetraplex, iDNA) modulates the melting temperature of a noncontacting, acceptor polymer [in this case poly(A)]. In addition to such proton-mediated cross talk, we also demonstrate counterion-mediated cross talk between noncontacting biopolymers. Specifically, we show that counterion association/release on denaturation of native salmon sperm DNA (the donor polymer) can modulate the melting temperature of poly(dA)⋅poly(dT) (the acceptor polymer). Taken together, these two examples demonstrate how poly(A) and poly(dA)⋅poly(dT) can serve as molecular probes that report the pH and free salt concentrations in solution, respectively. Further, we demonstrate how such through-solvent dialogue between biopolymers that do not directly interact can be used to evaluate (in a model-free manner) association/dissociation reactions of solvent components (e.g., protons, sodium cations) with one of the two biopolymers. We propose that such through-solution dialogue is a general property of all biopolymers. As a result, such solvent-mediated cross talk should be considered when assessing reactions of multicomponent systems such as those that exist in essentially all biological processes.