10 resultados para Combinatorial Chemistry Techniques

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new methodology for the construction of combinatorial libraries is described. The approach, termed dendrimer-supported combinatorial chemistry (DCC), centers on the use of dendrimers as soluble supports. Salient features of DCC include solution phase chemistry, homogeneous purification, routine characterization of intermediates, and high support loadings. To demonstrate the feasibility of DCC, single compounds and a small combinatorial library were prepared via the Fischer indole synthesis. Excellent product yields and purities were obtained, and dendrimer-protected intermediates could be routinely analyzed by 1H and 13C NMR and by mass spectrometry. The results indicate that DCC is a general and efficient strategy for the generation of combinatorial libraries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial chemistry is gaining wide appeal as a technique for generating molecular diversity. Among the many combinatorial protocols, the split/recombine method is quite popular and particularly efficient at generating large libraries of compounds. In this process, polymer beads are equally divided into a series of pools and each pool is treated with a unique fragment; then the beads are recombined, mixed to uniformity, and redivided equally into a new series of pools for the subsequent couplings. The deviation from the ideal equimolar distribution of the final products is assessed by a special overall relative error, which is shown to be related to the Pearson statistic. Although the split/recombine sampling scheme is quite different from those used in analysis of categorical data, the Pearson statistic is shown to still follow a chi2 distribution. This result allows us to derive the required number of beads such that, with 99% confidence, the overall relative error is controlled to be less than a pregiven tolerable limit L1. In this paper, we also discuss another criterion, which determines the required number of beads so that, with 99% confidence, all individual relative errors are controlled to be less than a pregiven tolerable limit L2 (0 < L2 < 1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point mutants of three unrelated antifluorescein antibodies were constructed to obtain nine different single-chain Fv fragments, whose on-rates, off-rates, and equilibrium binding affinities were determined in solution. Additionally, activation energies for unbinding were estimated from the temperature dependence of the off-rate in solution. Loading rate-dependent unbinding forces were determined for single molecules by atomic force microscopy, which extrapolated at zero force to a value close to the off-rate measured in solution, without any indication for multiple transition states. The measured unbinding forces of all nine mutants correlated well with the off-rate in solution, but not with the temperature dependence of the reaction, indicating that the same transition state must be crossed in spontaneous and forced unbinding and that the unbinding path under load cannot be too different from the one at zero force. The distance of the transition state from the ground state along the unbinding pathway is directly proportional to the barrier height, regardless of the details of the binding site, which most likely reflects the elasticity of the protein in the unbinding process. Atomic force microscopy thus can be a valuable tool for the characterization of solution properties of protein-ligand systems at the single molecule level, predicting relative off-rates, potentially of great value for combinatorial chemistry and biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The search for novel leads is a critical step in the drug discovery process. Computational approaches to identify new lead molecules have focused on discovering complete ligands by evaluating the binding affinity of a large number of candidates, a task of considerable complexity. A new computational method is introduced in this work based on the premise that the primary molecular recognition event in the protein binding site may be accomplished by small core fragments that serve as molecular anchors, providing a structurally stable platform that can be subsequently tailored into complete ligands. To fulfill its role, we show that an effective molecular anchor must meet both the thermodynamic requirement of relative energetic stability of a single binding mode and its consistent kinetic accessibility, which may be measured by the structural consensus of multiple docking simulations. From a large number of candidates, this technique is able to identify known core fragments responsible for primary recognition by the FK506 binding protein (FKBP-12), along with a diverse repertoire of novel molecular cores. By contrast, absolute energetic criteria for selecting molecular anchors are found to be promiscuous. A relationship between a minimum frustration principle of binding energy landscapes and receptor-specific molecular anchors in their role as "recognition nuclei" is established, thereby unraveling a mechanism of lead discovery and providing a practical route to receptor-biased computational combinatorial chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The selectins are calcium-dependent C-type lectins that recognize complex anionic carbohydrate ligands, initiating many cell-cell interactions in the vascular system. Selectin blockade shows therapeutic promise in a variety of inflammatory and postischemic pathologies. However, the available oligosaccharide ligand mimetics have low affinities and show cross-reaction among the three selectins, precluding efficient and specific blockade. The SELEX (systematic evolution of ligands by exponential enrichment) process uses combinatorial chemistry and in vitro selection to yield high affinity oligonucleotides with unexpected binding specificities. Nuclease-stabilized randomized oligonucleotides subjected to SELEX against recombinant L-selectin yielded calcium-dependent antagonists with approximately 10(5) higher affinity than the conventional oligosaccharide ligand sialyl LewisX. Most of the isolated ligands shared a common consensus sequence. Unlike sialyl LewisX, these antagonists show little binding to E- or P-selectin. Moreover, they show calcium-dependent binding to native L-selectin on peripheral blood lymphocytes and block L-selectin-dependent interactions with the natural ligands on high endothelial venules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The link between recognition and replication is fundamental to the operation of the immune system. In recent years, modeling this process in a format of phage-display combinatorial libraries has afforded a powerful tool for obtaining valuable antibodies. However, the ability to readily select and isolate rare catalysts would expand the scope of library technology. A technique in which phage infection controlled the link between recognition and replication was applied to show that chemistry is a selectable process. An antibody that operated by covalent catalysis to form an acyl intermediate restored phage infectivity and allowed selection from a library in which the catalyst constituted 1 in 105 members. Three different selection approaches were examined for their convenience and generality. Incorporating these protocols together with well known affinity labels and mechanism-based inactivators should allow the procurement of a wide range of novel catalytic antibodies.