25 resultados para Colonic polyps
em National Center for Biotechnology Information - NCBI
Resumo:
Cancer cell genomes contain alterations beyond known etiologic events, but their total number has been unknown at even the order of magnitude level. By sampling colorectal premalignant polyp and carcinoma cell genomes through use of the technique inter-(simple sequence repeat) PCR, we have found genomic alterations to be considerably more abundant than expected, with the mean number of genomic events per carcinoma cell totaling approximately 11,000. Colonic polyps early in the tumor progression pathway showed similar numbers of events. These results indicate that, as with certain hereditary cancer syndromes, genomic destabilization is an early step in sporadic tumor development. Together these results support the model of genomic instability being a cause rather than an effect of malignancy, facilitating vastly accelerated somatic cell evolution, with the observed orderly steps of the colon cancer progression pathway reflecting the consequences of natural selection.
Resumo:
We have examined the effects of inactivation of the p53 tumor suppressor gene on the incidence of apoptotic cell death in two stages of the adenoma-to-carcinoma progression in the intestine: in early adenomas where p53 mutations are rare and in highly dysplastic adenomas where loss of p53 occurs frequently. Homozygosity for an inactivating germ-line mutation of p53 had no effect on the incidence or the rate of progression of ApcMin/+-induced adenomas in mice and also did not affect the frequency of apoptosis in the cells of these adenomas. To examine the effect of p53 loss on apoptosis in late-stage adenomas, we compared the incidence of apoptotic cell death before and after the appearance of highly dysplastic cells in human colonic adenomas. The appearance of highly dysplastic cells, which usually coincides during colon tumor progression with loss of heterozygosity at the p53 locus, did not correlate with a reduction in the incidence of apoptosis. These studies suggest that p53 is only one of the genes that determine the incidence of apoptotic in colon carcinomas and that wild-type p53 retards the progression of many benign colonic adenoma to malignant carcinomas by mechanism(s) other than the promotion of apoptosis.
Resumo:
We previously have demonstrated that the colonic P-ATPase α subunit cDNA encodes an H,K-ATPase when expressed in Xenopus laevis oocytes. Besides its high level of amino acid homology (75%) with the Na,K-ATPase, the colonic H,K-ATPase also shares a common pharmacological profile with Na,K-ATPase, because both are ouabain-sensitive and Sch 28080-insensitive. These features raise the possibility that an unrecognized property of the colonic H,K-ATPase would be Na+ translocation. To test this hypothesis, ion-selective microelectrodes were used to measure the intracellular Na+ activity of X. laevis oocytes expressing various combinations of P-ATPase subunits. The results show that expression in oocytes of the colonic H,K-ATPase affects intracellular Na+ homeostasis in a way similar to the expression of the Bufo marinus Na,K-ATPase; intracellular Na+ activity is lower in oocytes expressing the colonic H,K-ATPase or the B. marinus Na,K-ATPase than in oocytes expressing the gastric H,K-ATPase or a β subunit alone. In oocytes expressing the colonic H,K-ATPase, the decrease in intracellular Na+ activity persists when diffusive Na+ influx is enhanced by functional expression of the amiloride-sensitive epithelial Na+ channel, suggesting that the decrease is related to increased active Na+ efflux. The Na+ decrease depends on the presence of K+ in the external medium and is inhibited by 2 mM ouabain, a concentration that inhibits the colonic H,K-ATPase. These data are consistent with the hypothesis that the colonic H,K-ATPase may transport Na+, acting as an (Na,H),K-ATPase. Despite its molecular and functional characterization, the physiological role of the colonic (Na,H),K-ATPase in colonic and renal ion homeostasis remains to be elucidated.
Resumo:
We previously reported that short-term immobilization stress of rats causes increased colonic mucin release, goblet cell depletion, prostaglandin E2 secretion, and colonic mast cell activation, as well as increased colonic motility. The purpose of this study was to investigate whether neurotensin (NT), a peptide expressed in both brain and digestive tract, participates in these responses. Rats were pretreated with SR 48692 (1 mg/kg, i.p.), an NT antagonist, 15 min before immobilization (30 min). The administration of the antagonist significantly inhibited stress-mediated secretion of colonic mucin, prostaglandin E2, and a product of rat mast cells, rat mast cell protease II (P < 0.05), but did not alter the increase in fecal pellet output caused by immobilization stress. Immobilization stress also resulted in a quantifiable decrease in the abundance of NT receptor mRNA in rat colon compared with that in colonic tissues from nonimmobilized rats as measured by densitometric analysis of in situ hybridization studies (P < 0.03). We conclude that the peptide NT is involved in colonic goblet cell release and mucosal mast cell activation after immobilization stress.
Resumo:
Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon.
Resumo:
Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.
Resumo:
It has been suggested that transepithelial gradients of short-chain fatty acids (SCFAs; the major anions in the colonic lumen) generate pH gradients across the colonic epithelium. Quantitative confocal microscopy was used to study extracellular pH in mouse distal colon with intact epithelial architecture, by superfusing tissue with carboxy SNARF-1 (a pH-sensitive fluorescent dye). Results demonstrate extracellular pH regulation in two separate microdomains surrounding colonic crypts: the crypt lumen and the subepithelial tissue adjacent to crypt colonocytes. Apical superfusion with (i) a poorly metabolized SCFA (isobutyrate), (ii) an avidly metabolized SCFA (n-butyrate), or (iii) a physiologic mixture of acetate/propionate/n-butyrate produced similar results: alkalinization of the crypt lumen and acidification of subepithelial tissue. Effects were (i) dependent on the presence and orientation of a transepithelial SCFA gradient, (ii) not observed with gluconate substitution, and (iii) required activation of sustained vectorial acid/base transport by SCFAs. Results suggest that the crypt lumen functions as a pH microdomain due to slow mixing with bulk superfusates and that crypts contribute significant buffering capacity to the lumen. In conclusion, physiologic SCFA gradients cause polarized extracellular pH regulation because epithelial architecture and vectorial transport synergize to establish regulated microenvironments.
Resumo:
A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.
Resumo:
Aberrant DNA methylation is a common phenomenon in human cancer, but its patterns, causes, and consequences are poorly defined. Promoter methylation of the DNA mismatch repair gene MutL homologue (MLH1) has been implicated in the subset of colorectal cancers that shows microsatellite instability (MSI). The present analysis of four MspI/HpaII sites at the MLH1 promoter region in a series of 89 sporadic colorectal cancers revealed two main methylation patterns that closely correlated with the MSI status of the tumors. These sites were hypermethylated in tumor tissue relative to normal mucosa in most MSI(+) cases (31/51, 61%). By contrast, in the majority of MSI(−) cases (20/38, 53%) the same sites showed methylation in normal mucosa and hypomethylation in tumor tissue. Hypermethylation displayed a direct correlation with increasing age and proximal location in the bowel and was accompanied by immunohistochemically documented loss of MLH1 protein both in tumors and in normal tissue. Similar patterns of methylation were observed in the promoter region of the calcitonin gene that does not have a known functional role in tumorigenesis. We propose a model of carcinogenesis where different epigenetic phenotypes distinguish the colonic mucosa in individuals who develop MSI(+) and MSI(−) tumors. These phenotypes may underlie the different developmental pathways that are known to occur in these tumors.
Resumo:
cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2Cα is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2Cα and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2Cα inactivated CFTR Cl− channels; reactivation required readdition of kinase. Finally, coexpression of PP2Cα with CFTR in epithelia reduced the Cl− current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target.
Resumo:
Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the absorption of sodium through the highly selective, amiloride-sensitive epithelial sodium channel (ENaC) made of three homologous subunits (α, β, and γ). In human, autosomal recessive mutations of α, β, or γENaC subunits cause pseudohypoaldosteronism type 1 (PHA-1), a renal salt-wasting syndrome characterized by severe hypovolemia, high plasma aldosterone, hyponatremia, life-threatening hyperkaliemia, and metabolic acidosis. In the mouse, inactivation of αENaC results in failure to clear fetal lung liquid at birth and in early neonatal death, preventing the observation of a PHA-1 renal phenotype. Transgenic expression of αENaC driven by a cytomegalovirus promoter in αENaC(−/−) knockout mice [αENaC(−/−)Tg] rescued the perinatal lethal pulmonary phenotype and partially restored Na+ transport in renal, colonic, and pulmonary epithelia. At days 5–9, however, αENaC(−/−)Tg mice showed clinical features of severe PHA-1 with metabolic acidosis, urinary salt-wasting, growth retardation, and 50% mortality. Adult αENaC(−/−)Tg survivors exhibited a compensated PHA-1 with normal acid/base and electrolyte values but 6-fold elevation of plasma aldosterone compared with wild-type littermate controls. We conclude that partial restoration of ENaC-mediated Na+ absorption in this transgenic mouse results in a mouse model for PHA-1.
Resumo:
Epithelial (E)-cadherin and its associated cytoplasmic proteins (α-, β-, and γ-catenins) are important mediators of epithelial cell–cell adhesion and intracellular signaling. Much evidence exists suggesting a tumor/invasion suppressor role for E-cadherin, and loss of expression, as well as mutations, has been described in a number of epithelial cancers. To investigate whether E-cadherin gene (CDH1) mutations occur in colorectal cancer, we screened 49 human colon carcinoma cell lines from 43 patients by single-strand conformation polymorphism (SSCP) analysis and direct sequencing. In addition to silent changes, polymorphisms, and intronic variants in a number of the cell lines, we detected frameshift single-base deletions in repeat regions of exon 3 (codons 120 and 126) causing premature truncations at codon 216 in four replication-error-positive (RER+) cell lines (LS174T, HCT116, GP2d, and GP5d) derived from 3 patients. In LS174T such a mutation inevitably contributes to its lack of E-cadherin protein expression and function. Transfection of full-length E-cadherin cDNA into LS174T cells enhanced intercellular adhesion, induced differentiation, retarded proliferation, inhibited tumorigenicity, and restored responsiveness to the migratory effects induced by the motogenic trefoil factor 2 (human spasmolytic polypeptide). These results indicate that, although inactivating E-cadherin mutations occur relatively infrequently in colorectal cancer cell lines overall (3/43 = 7%), they are more common in cells with an RER+ phenotype (3/10 = 30%) and may contribute to the dysfunction of the E-cadherin–catenin-mediated adhesion/signaling system commonly seen in these tumors. These results also indicate that normal E-cadherin-mediated cell adhesion can restore the ability of colonic tumor cells to respond to trefoil factor 2.
Resumo:
Familial adenomatous polyposis (FAP) is an autosomal-dominant disease characterized by the development of hundreds of adenomatous polyps of the colorectum. Approximately 80% of FAP patients can be shown to have truncating mutations of the APC gene. To determine the cause of FAP in the other 20% of patients, MAMA (monoallelic mutation analysis) was used to independently examine the status of each of the two APC alleles. Seven of nine patients analyzed were found to have significantly reduced expression from one of their two alleles whereas two patients were found to have full-length expression from both alleles. We conclude that more than 95% of patients with FAP have inactivating mutations in APC and that a combination of MAMA and standard genetic tests will identify APC abnormalities in the vast majority of such patients. That no APC expression from the mutant allele is found in some FAP patients argues strongly against the requirement for dominant negative effects of APC mutations. The results also suggest that there may be at least one additional gene, besides APC, that can give rise to FAP.
Resumo:
The evolutionarily conserved protein EB1 originally was identified by its physical association with the carboxyl-terminal portion of the adenomatous polyposis coli (APC) tumor suppressor protein, an APC domain commonly mutated in familial and sporadic forms of colorectal neoplasia. The subcellular localization of EB1 in epithelial cells was studied by using immunofluorescence and biochemical techniques. EB1 colocalized both to cytoplasmic microtubules in interphase cells and to spindle microtubules during mitosis, with pronounced centrosome staining. The cytoskeletal array detected by anti-EB1 antibody was abolished by incubation of the cells with nocodazole, an agent that disrupts microtubules; upon drug removal, EB1 localized to the microtubule-organizing center. Immunofluorescence analysis of SW480, a colon cancer cell line that expresses only carboxyl-terminal-deleted APC unable to interact with EB1, demonstrated that EB1 remained localized to the microtubule cytoskeleton, suggesting that this pattern of subcellular distribution is not mediated by its interaction with APC. In vitro cosedimentation with taxol-stabilized microtubules demonstrated that a significant fraction of EB1 associated with microtubules. Recent studies of the yeast EB1 homologues Mal3 and Bim1p have demonstrated that both proteins localize to microtubules and are important in vivo for microtubule function. Our results demonstrate that EB1 is a novel component of the microtubule cytoskeleton in mammalian cells. Associating with the mitotic apparatus, EB1 may play a physiologic role connecting APC to cellular division, coordinating the control of normal growth and differentiation processes in the colonic epithelium.