23 resultados para Colon (Anatomia) - Cancer - Prevenção

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Translation of thymidylate synthase (TS) mRNA is controlled by its own protein end-product TS in a negative autoregulatory manner. Disruption of this regulation results in increased synthesis of TS and may lead to the development of cellular drug resistance to TS-directed anticancer agents. As a strategy to inhibit TS expression, antisense 2′-O-methyl RNA oligoribonucleotides (ORNs) were designed to directly target the 5′ upstream cis-acting regulatory element (nucleotides 80–109) of TS mRNA. A 30 nt ORN, HYB0432, inhibited TS expression in human colon cancer RKO cells in a dose-dependent manner but had no effect on the expression of β-actin, α-tubulin or topoisomerase I. TS expression was unaffected by treatment with control sense or mismatched ORNs. HYB0504, an 18 nt ORN targeting the same core sequence, also repressed expression of TS protein. However, further reduction in oligo size resulted in loss of antisense activity. Following HYB0432 treatment, TS protein levels were reduced by 60% within 6 h and were maximally reduced by 24 h. Expression of p53 protein was inversely related to that of TS, suggesting that p53 expression may be directly linked to intracellular levels of TS. Northern blot analysis demonstrated that TS mRNA was unaffected by HYB0432 treatment. The half-life of TS protein was unchanged after antisense treatment suggesting that the mechanism of action of antisense ORNs is mediated through a process of translational arrest. These findings demonstrate that an antisense ORN targeted at a critical cis-acting element on TS mRNA can specifically inhibit expression of TS protein in RKO cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that have been implicated in a variety of biologic processes. The PPARδ isotype was recently proposed as a downstream target of the adenomatous polyposis coli (APC)/β-catenin pathway in colorectal carcinogenesis. To evaluate its role in tumorigenesis, a PPARδ null cell line was created by targeted homologous recombination. When inoculated as xenografts in nude mice, PPARδ −/− cells exhibited a decreased ability to form tumors compared with PPARδ +/− and wild-type controls. These data suggest that suppression of PPARδ expression contributes to the growth-inhibitory effects of the APC tumor suppressor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epigenetic alterations in the genome of tumor cells have attracted considerable attention since the discovery of widespread alterations in DNA methylation of colorectal cancers over 10 years ago. However, the mechanism of these changes has remained obscure. el-Deiry and coworkers [el-Deiry, W. S., Nelkin, B. D., Celano, P., Yen, R. C., Falco, J. P., Hamilton, S. R. & Baylin, S. B. (1991) Proc. Natl. Acad. Sci. USA 88, 3470-3474], using a quantitative reverse transcription-PCR assay, reported 15-fold increased expression of DNA methyltransferase (MTase) in colon cancer, compared with matched normal colon mucosa, and a 200-fold increase in MTase mRNA levels compared with mucosa of unaffected patients. These authors suggested that increases in MTase mRNA levels play a direct pathogenetic role in colon carcinogenesis. To test this hypothesis, we developed a sensitive quantitative RNase protection assay of MTase, linear over three orders of magnitude. Using this assay on 12 colorectal carcinomas and matched normal mucosal specimens, we observed a 1.8- to 2.5-fold increase in MTase mRNA levels in colon carcinoma compared with levels in normal mucosa from the same patients. There was no significant difference between the normal mucosa of affected and unaffected patients. Furthermore, when the assay was normalized to histone H4 expression, a measure of S-phase-specific expression, the moderate increase in tumor MTase mRNA levels was no longer observed. These data are in contrast to the previously reported results, and they indicate that changes in MTase mRNA levels in colon cancer are nonspecific and compatible with other markers of cell proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evidence from epidemiological studies, clinical trials, and animal experiments indicates that inhibitors of prostaglandin synthesis lower the risk of colon cancer. We tested the hypothesis that abnormal expression of prostaglandin H synthase 2 (PHS-2), which can be induced by oncogenes and tumor promoters, occurs during colon carcinogenesis by examining its level in colon tumors. Human colon cancers were found to have an increased expression of PHS-2 mRNA compared with normal colon specimens from the same patient (n = 5). In situ hybridization showed that the neoplastic colonocytes had increased expression of PHS-2 (n = 4). Additionally, five colon cancer cell lines were shown to express high levels of PHS-2 mRNA even in the absence of a known inducer of PHS-2. To study the basis for this increased gene expression, we transfected a colon cancer cell line, HCT-116, with a reporter gene containing 2.0 kb of the 5' regulatory sequence of the PHS-2 gene. Constitutive transcription of the reporter gene was observed, whereas normal control cell lines transcribed the reporter only in response to an exogenous agonist. We conclude that PHS-2 is transcribed abnormally in human colon cancers and that this may be one mechanism by which prostaglandins or related compounds that support carcinogenesis are generated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The predisposition to colon cancer is multigenetically controlled in animals and probably also in humans. We have analyzed the multigenic control of susceptibility to 1,2-dimethylhydrazine-induced colon tumors in mice by using a set of 20 homozygous CcS/Dem recombinant congenic strains, each of which contains a different random subset of approximately 12.5% of genes from the susceptible strain STS/A and 87.5% of genes from the relatively resistant strain BALB/cHeA. Some CcS/Dem strains received the alleles from the susceptible strain STS/A at one or more of the multiple colon tumor susceptibility loci and are susceptible, whereas others are resistant. Linkage analysis shows that these susceptibility genes are different from the mouse homologs of the genes known to be somatically mutated in human colon cancer (KRAS2, TP53, DCC, MCC, APC, MSH2, and probably also MLH1). Different subsets of genes control tumor numbers and size. Two colon cancer susceptibility genes, Scc1 and Scc2, map to mouse chromosome 2. The Scc1 locus has been mapped to a narrow region of 2.4 centimorgans (90% confidence interval).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumors that metastasize do so to preferred target organs. To explain this apparent specificity, Paget, > 100 years ago, formulated his seed and soil hypothesis; i.e., the cells from a given tumor would "seed'' only favorable "soil'' offered by certain groups. The hypothesis implies that cancer cells must find a suitable "soil'' in a target organ--i.e., one that supports colonization--for metastasis to occur. We demonstrate in this report that ability of human colon cancer cells to colonize liver tissue governs whether a particular colon cancer is metastatic. In the model used in this study, human colon tumors are transplanted into the nude mouse colon as intact tissue blocks by surgical orthotopic implantation. These implanted tumors closely simulate the metastatic behavior of the original human patient tumor and are clearly metastatic or nonmetastatic to the liver. Both classes of tumors were equally invasive locally into tissues and blood vessels. However, the cells from each class of tumor behave very differently when directly injected into nude mouse livers. Only cells from metastasizing tumors are competent to colonize after direct intrahepatic injection. Also, tissue blocks from metastatic tumors af fixed directly to the liver resulted in colonization, whereas no colonization resulted from nonmetastatic tumor tissue blocks even though some growth occurred within the tissue block itself. Thus, local invasion (injection) and even adhesion to the metastatic target organ (blocks) are not sufficient for metastasis. The results suggest that the ability to colonize the liver is the governing step in the metastasis of human colon cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rapid progress in the cloning of proteoglycan genes has enabled investigators to examine in depth the functional roles these polyhedric molecules play in the control of cell proliferation. Decorin, a leucine-rich proteoglycan expressed by most connective tissues, is a prototype molecule that regulates cellular growth via two mechanisms: modulation of growth factor activity and matrix assembly. We now provide direct evidence that human colon cancer cells stably transfected with decorin cDNA exhibit a marked suppression of the transformed phenotype: the cells have a reduced growth rate in vitro, form small colonies in soft agar, and do not generate tumors in scid/scid mice. Several independent clones are arrested in the G1 phase of the cell cycle, and their growth suppression can be restored by treatment with decorin antisense oligodeoxynucleotides. These effects are independent of growth factors and are not due to either clonal selection or integration site of the decorin gene. These findings correlate well with the observation that decorin gene expression is markedly up-regulated during quiescence. Decorin thus appears to be one component of a negative loop that controls cell growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have ectopically expressed transcription factor ETS1 in two different highly tumorigenic human colon cancer cell lines, DLD-1 and HCT116, that do not express endogenous ETS1 protein and have obtained several independent clones. The expression of wild-type ETS1 protein in these colon cancer cells reverses the transformed phenotype and tumorigenicity in a dose-dependent manner. By contrast, expression in DLD-1 cells of a variant form of ETS1, lacking transcriptional activity, did not alter the tumorigenic properties of the cells, suggesting that the reduction in tumorigenicity in these clones was specific for the wild-type ETS1 gene products. Since these colon cancer cells have multiple genetic alterations, the system described in this paper could be a good model to study the suppression of tumorigenicity at a transcriptional level, which could lead to the design and development of novel drugs for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ETS1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. ETS1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. The ETS1 gene generates two proteins, p51 and a spliced variant, p42, lacking exon VII. In this paper we show that p42-ETS1 expression bypasses the damaged Fas-induced apoptotic pathway in DLD1 colon carcinoma cells by up-regulating interleukin 1β-converting enzyme (ICE)/caspase-1 and causes these cancer cells to become susceptible to the effects of the normal apoptosis activation system. ICE/caspase-1 is a redundant system in many cells and tissues, and here we demonstrate that it is important in activating apoptosis in cells where the normal apoptosis pathway is blocked. Blocking ICE/caspase-1 activity by using specific inhibitors of this protease prevents the p42-ETS1-induced apoptosis from occurring, indicating that the induced ICE/caspase-1 enzyme is responsible for killing the cancer cells. p42-ETS1 activates a critical alternative apoptosis pathway in cancer cells that are resistant to normal immune attack, and thus it may be useful as an anticancer therapeutic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1–8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22–6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12–20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic and phenotypic instability are hallmarks of cancer cells, but their cause is not clear. The leading hypothesis suggests that a poorly defined gene mutation generates genetic instability and that some of many subsequent mutations then cause cancer. Here we investigate the hypothesis that genetic instability of cancer cells is caused by aneuploidy, an abnormal balance of chromosomes. Because symmetrical segregation of chromosomes depends on exactly two copies of mitosis genes, aneuploidy involving chromosomes with mitosis genes will destabilize the karyotype. The hypothesis predicts that the degree of genetic instability should be proportional to the degree of aneuploidy. Thus it should be difficult, if not impossible, to maintain the particular karyotype of a highly aneuploid cancer cell on clonal propagation. This prediction was confirmed with clonal cultures of chemically transformed, aneuploid Chinese hamster embryo cells. It was found that the higher the ploidy factor of a clone, the more unstable was its karyotype. The ploidy factor is the quotient of the modal chromosome number divided by the normal number of the species. Transformed Chinese hamster embryo cells with a ploidy factor of 1.7 were estimated to change their karyotype at a rate of about 3% per generation, compared with 1.8% for cells with a ploidy factor of 0.95. Because the background noise of karyotyping is relatively high, the cells with low ploidy factor may be more stable than our method suggests. The karyotype instability of human colon cancer cell lines, recently analyzed by Lengnauer et al. [Lengnauer, C., Kinzler, K. W. & Vogelstein, B. (1997) Nature (London) 386, 623–627], also corresponds exactly to their degree of aneuploidy. We conclude that aneuploidy is sufficient to explain genetic instability and the resulting karyotypic and phenotypic heterogeneity of cancer cells, independent of gene mutation. Because aneuploidy has also been proposed to cause cancer, our hypothesis offers a common, unique mechanism of altering and simultaneously destabilizing normal cellular phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIα regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial (E)-cadherin and its associated cytoplasmic proteins (α-, β-, and γ-catenins) are important mediators of epithelial cell–cell adhesion and intracellular signaling. Much evidence exists suggesting a tumor/invasion suppressor role for E-cadherin, and loss of expression, as well as mutations, has been described in a number of epithelial cancers. To investigate whether E-cadherin gene (CDH1) mutations occur in colorectal cancer, we screened 49 human colon carcinoma cell lines from 43 patients by single-strand conformation polymorphism (SSCP) analysis and direct sequencing. In addition to silent changes, polymorphisms, and intronic variants in a number of the cell lines, we detected frameshift single-base deletions in repeat regions of exon 3 (codons 120 and 126) causing premature truncations at codon 216 in four replication-error-positive (RER+) cell lines (LS174T, HCT116, GP2d, and GP5d) derived from 3 patients. In LS174T such a mutation inevitably contributes to its lack of E-cadherin protein expression and function. Transfection of full-length E-cadherin cDNA into LS174T cells enhanced intercellular adhesion, induced differentiation, retarded proliferation, inhibited tumorigenicity, and restored responsiveness to the migratory effects induced by the motogenic trefoil factor 2 (human spasmolytic polypeptide). These results indicate that, although inactivating E-cadherin mutations occur relatively infrequently in colorectal cancer cell lines overall (3/43 = 7%), they are more common in cells with an RER+ phenotype (3/10 = 30%) and may contribute to the dysfunction of the E-cadherin–catenin-mediated adhesion/signaling system commonly seen in these tumors. These results also indicate that normal E-cadherin-mediated cell adhesion can restore the ability of colonic tumor cells to respond to trefoil factor 2.