4 resultados para Colloid

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effect on mortality of resuscitation with colloid solutions compared with resuscitation with crystalloids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How colloidal particles interact with each other is one of the key issues that determines our ability to interpret experimental results for phase transitions in colloidal dispersions and our ability to apply colloid science to various industrial processes. The long-accepted theories for answering this question have been challenged by results from recent experiments. Herein we show from Monte-Carlo simulations that there is a short-range attractive force between identical macroions in electrolyte solutions containing divalent counterions. Complementing some recent and related results by others, we present strong evidence of attraction between a pair of spherical macroions in the presence of added salt ions for the conditions where the interacting macroion pair is not affected by any other macroions that may be in the solution. This attractive force follows from the internal-energy contribution of counterion mediation. Contrary to conventional expectations, for charged macroions in an electrolyte solution, the entropic force is repulsive at most solution conditions because of localization of small ions in the vicinity of macroions. Both Derjaguin–Landau–Verwey–Overbeek theory and Sogami–Ise theory fail to describe the attractive interactions found in our simulations; the former predicts only repulsive interaction and the latter predicts a long-range attraction that is too weak and occurs at macroion separations that are too large. Our simulations provide fundamental “data” toward an improved theory for the potential of mean force as required for optimum design of new materials including those containing nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.